Kaifeng Yu, S. Zuo, Fengquan Wu, Yougang Wang, Xuelei Chen
{"title":"正则化方法在天来圆柱探路者阵列天图重建中的应用","authors":"Kaifeng Yu, S. Zuo, Fengquan Wu, Yougang Wang, Xuelei Chen","doi":"10.1088/1674-4527/ad1223","DOIUrl":null,"url":null,"abstract":"\n The Tianlai cylinder pathfinder is a radio interferometer array to test 21 cm intensity mapping techniques in the post-reionization era. It works in passive drift scan mode to survey the sky visible in the northern hemisphere. To deal with the large instantaneous field of view and the spherical sky, we decompose the drift scan data into $m$-modes, which are linearly related to the sky intensity. The sky map is reconstructed by solving the linear interferometer equations. Due to incomplete $uv$ coverage of the interferometer baselines, this inverse problem is usually ill-posed, and regularization method is needed for its solution. In this paper, we use simulation to investigate two frequently used regularization methods, the Truncated Singular Value Decomposition (TSVD), and the Tikhonov regularization techniques. Choosing the regularization parameter is very important for its application. We employ the generalized cross validation (GCV) method and the L-curve method to determine the optimal value. We compare the resulting maps obtained with the different regularization methods, and for the different parameters derived using the different criteria. While both methods can yield good maps for a range of regularization parameters, in the Tikhonov method the suppression of noisy modes are more gradually applied, produce more smooth maps which avoids some visual artefacts in the maps generated with the TSVD method.","PeriodicalId":54494,"journal":{"name":"Research in Astronomy and Astrophysics","volume":"70 5","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2023-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Application of Regularization Methods in the Sky Map Reconstruction of the Tianlai Cylinder Pathfinder Array\",\"authors\":\"Kaifeng Yu, S. Zuo, Fengquan Wu, Yougang Wang, Xuelei Chen\",\"doi\":\"10.1088/1674-4527/ad1223\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n The Tianlai cylinder pathfinder is a radio interferometer array to test 21 cm intensity mapping techniques in the post-reionization era. It works in passive drift scan mode to survey the sky visible in the northern hemisphere. To deal with the large instantaneous field of view and the spherical sky, we decompose the drift scan data into $m$-modes, which are linearly related to the sky intensity. The sky map is reconstructed by solving the linear interferometer equations. Due to incomplete $uv$ coverage of the interferometer baselines, this inverse problem is usually ill-posed, and regularization method is needed for its solution. In this paper, we use simulation to investigate two frequently used regularization methods, the Truncated Singular Value Decomposition (TSVD), and the Tikhonov regularization techniques. Choosing the regularization parameter is very important for its application. We employ the generalized cross validation (GCV) method and the L-curve method to determine the optimal value. We compare the resulting maps obtained with the different regularization methods, and for the different parameters derived using the different criteria. While both methods can yield good maps for a range of regularization parameters, in the Tikhonov method the suppression of noisy modes are more gradually applied, produce more smooth maps which avoids some visual artefacts in the maps generated with the TSVD method.\",\"PeriodicalId\":54494,\"journal\":{\"name\":\"Research in Astronomy and Astrophysics\",\"volume\":\"70 5\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2023-12-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Research in Astronomy and Astrophysics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/1674-4527/ad1223\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research in Astronomy and Astrophysics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1674-4527/ad1223","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
Application of Regularization Methods in the Sky Map Reconstruction of the Tianlai Cylinder Pathfinder Array
The Tianlai cylinder pathfinder is a radio interferometer array to test 21 cm intensity mapping techniques in the post-reionization era. It works in passive drift scan mode to survey the sky visible in the northern hemisphere. To deal with the large instantaneous field of view and the spherical sky, we decompose the drift scan data into $m$-modes, which are linearly related to the sky intensity. The sky map is reconstructed by solving the linear interferometer equations. Due to incomplete $uv$ coverage of the interferometer baselines, this inverse problem is usually ill-posed, and regularization method is needed for its solution. In this paper, we use simulation to investigate two frequently used regularization methods, the Truncated Singular Value Decomposition (TSVD), and the Tikhonov regularization techniques. Choosing the regularization parameter is very important for its application. We employ the generalized cross validation (GCV) method and the L-curve method to determine the optimal value. We compare the resulting maps obtained with the different regularization methods, and for the different parameters derived using the different criteria. While both methods can yield good maps for a range of regularization parameters, in the Tikhonov method the suppression of noisy modes are more gradually applied, produce more smooth maps which avoids some visual artefacts in the maps generated with the TSVD method.
期刊介绍:
Research in Astronomy and Astrophysics (RAA) is an international journal publishing original research papers and reviews across all branches of astronomy and astrophysics, with a particular interest in the following topics:
-large-scale structure of universe formation and evolution of galaxies-
high-energy and cataclysmic processes in astrophysics-
formation and evolution of stars-
astrogeodynamics-
solar magnetic activity and heliogeospace environments-
dynamics of celestial bodies in the solar system and artificial bodies-
space observation and exploration-
new astronomical techniques and methods