{"title":"基于 RBF 近似模型的轴承残余寿命预测","authors":"Qiang Zhen, Ling Shen","doi":"10.2478/amns.2023.2.01329","DOIUrl":null,"url":null,"abstract":"Abstract Once the failure of rotating machinery occurs, it may cause the whole system to paralyze and cause great economic losses, or it may cause casualties. Therefore, the prediction of the remaining life of bearings is of great significance. The purpose of this paper is to analyze the approximate modeling technology and develop a framework for combined approximate modeling technology. A multi-strategy radial-based approximate model optimization model is proposed based on the limitations of radial-based approximate model technology. Utilizing the weight coefficient solving technique, the variable confidence RBF model, i.e., RBF-LSTM model, is established. Propose the remaining methods for life prediction using the bearing life prediction process. The RBF-LSTM combined approximation model is used to construct the evaluation index for rolling bearing remaining life prediction. Using the empirical analysis method, the optimization effects of different models and the accuracy of bearing remaining life prediction are analyzed, respectively. Experiments show that the data range of the RBF-LSTM combined approximation model is between [23,52], the overall fluctuation range of the data is not large, and the time taken is only 31 s. After 230 calculations, the model optimization effect is better. In the remaining life validation, the starting values of 132h and 148h are less different from real life, only 1.53h and 1.3h, respectively, and the model prediction accuracy is high.","PeriodicalId":52342,"journal":{"name":"Applied Mathematics and Nonlinear Sciences","volume":"42 2","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2023-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Residual life prediction of bearings based on RBF approximation models\",\"authors\":\"Qiang Zhen, Ling Shen\",\"doi\":\"10.2478/amns.2023.2.01329\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Once the failure of rotating machinery occurs, it may cause the whole system to paralyze and cause great economic losses, or it may cause casualties. Therefore, the prediction of the remaining life of bearings is of great significance. The purpose of this paper is to analyze the approximate modeling technology and develop a framework for combined approximate modeling technology. A multi-strategy radial-based approximate model optimization model is proposed based on the limitations of radial-based approximate model technology. Utilizing the weight coefficient solving technique, the variable confidence RBF model, i.e., RBF-LSTM model, is established. Propose the remaining methods for life prediction using the bearing life prediction process. The RBF-LSTM combined approximation model is used to construct the evaluation index for rolling bearing remaining life prediction. Using the empirical analysis method, the optimization effects of different models and the accuracy of bearing remaining life prediction are analyzed, respectively. Experiments show that the data range of the RBF-LSTM combined approximation model is between [23,52], the overall fluctuation range of the data is not large, and the time taken is only 31 s. After 230 calculations, the model optimization effect is better. In the remaining life validation, the starting values of 132h and 148h are less different from real life, only 1.53h and 1.3h, respectively, and the model prediction accuracy is high.\",\"PeriodicalId\":52342,\"journal\":{\"name\":\"Applied Mathematics and Nonlinear Sciences\",\"volume\":\"42 2\",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2023-12-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Mathematics and Nonlinear Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/amns.2023.2.01329\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematics and Nonlinear Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/amns.2023.2.01329","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
Residual life prediction of bearings based on RBF approximation models
Abstract Once the failure of rotating machinery occurs, it may cause the whole system to paralyze and cause great economic losses, or it may cause casualties. Therefore, the prediction of the remaining life of bearings is of great significance. The purpose of this paper is to analyze the approximate modeling technology and develop a framework for combined approximate modeling technology. A multi-strategy radial-based approximate model optimization model is proposed based on the limitations of radial-based approximate model technology. Utilizing the weight coefficient solving technique, the variable confidence RBF model, i.e., RBF-LSTM model, is established. Propose the remaining methods for life prediction using the bearing life prediction process. The RBF-LSTM combined approximation model is used to construct the evaluation index for rolling bearing remaining life prediction. Using the empirical analysis method, the optimization effects of different models and the accuracy of bearing remaining life prediction are analyzed, respectively. Experiments show that the data range of the RBF-LSTM combined approximation model is between [23,52], the overall fluctuation range of the data is not large, and the time taken is only 31 s. After 230 calculations, the model optimization effect is better. In the remaining life validation, the starting values of 132h and 148h are less different from real life, only 1.53h and 1.3h, respectively, and the model prediction accuracy is high.