Ali Mahmoudi, Arash P. Jirandehi, Mohammad Ali Amooie, M. Khonsari
{"title":"用于评估剩余有用疲劳寿命的基于熵的损伤模型","authors":"Ali Mahmoudi, Arash P. Jirandehi, Mohammad Ali Amooie, M. Khonsari","doi":"10.1177/10567895231215474","DOIUrl":null,"url":null,"abstract":"A reliable approach based on an entropy-damage model for assessing remaining useful fatigue life is presented. Two damage models are presented and evaluated to assess their effectiveness in predicting remaining useful life. The first model focuses on reduced toughness caused by fatigue degradation, while the second is based on accumulating entropy during fatigue loading. The entropy-based approach employs infrared thermography to anticipate entropy accumulation and damage status. Outcomes reveal that the entropy-driven technique offers enhanced precision. Moreover, its damage growth rate remains consistent, regardless of the number of cycles leading to failure, ensuring a more stable tracking of damage evolution. It successfully predicts the remaining useful life and can treat variable load sequencing without knowing the loading history. An extensive set of experimental results with carbon steel 1018 are presented to illustrate the utility of the approach.","PeriodicalId":13837,"journal":{"name":"International Journal of Damage Mechanics","volume":"116 13","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2023-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Entropy-based damage model for assessing the remaining useful fatigue life\",\"authors\":\"Ali Mahmoudi, Arash P. Jirandehi, Mohammad Ali Amooie, M. Khonsari\",\"doi\":\"10.1177/10567895231215474\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A reliable approach based on an entropy-damage model for assessing remaining useful fatigue life is presented. Two damage models are presented and evaluated to assess their effectiveness in predicting remaining useful life. The first model focuses on reduced toughness caused by fatigue degradation, while the second is based on accumulating entropy during fatigue loading. The entropy-based approach employs infrared thermography to anticipate entropy accumulation and damage status. Outcomes reveal that the entropy-driven technique offers enhanced precision. Moreover, its damage growth rate remains consistent, regardless of the number of cycles leading to failure, ensuring a more stable tracking of damage evolution. It successfully predicts the remaining useful life and can treat variable load sequencing without knowing the loading history. An extensive set of experimental results with carbon steel 1018 are presented to illustrate the utility of the approach.\",\"PeriodicalId\":13837,\"journal\":{\"name\":\"International Journal of Damage Mechanics\",\"volume\":\"116 13\",\"pages\":\"\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2023-12-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Damage Mechanics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1177/10567895231215474\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Damage Mechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/10567895231215474","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Entropy-based damage model for assessing the remaining useful fatigue life
A reliable approach based on an entropy-damage model for assessing remaining useful fatigue life is presented. Two damage models are presented and evaluated to assess their effectiveness in predicting remaining useful life. The first model focuses on reduced toughness caused by fatigue degradation, while the second is based on accumulating entropy during fatigue loading. The entropy-based approach employs infrared thermography to anticipate entropy accumulation and damage status. Outcomes reveal that the entropy-driven technique offers enhanced precision. Moreover, its damage growth rate remains consistent, regardless of the number of cycles leading to failure, ensuring a more stable tracking of damage evolution. It successfully predicts the remaining useful life and can treat variable load sequencing without knowing the loading history. An extensive set of experimental results with carbon steel 1018 are presented to illustrate the utility of the approach.
期刊介绍:
Featuring original, peer-reviewed papers by leading specialists from around the world, the International Journal of Damage Mechanics covers new developments in the science and engineering of fracture and damage mechanics.
Devoted to the prompt publication of original papers reporting the results of experimental or theoretical work on any aspect of research in the mechanics of fracture and damage assessment, the journal provides an effective mechanism to disseminate information not only within the research community but also between the reseach laboratory and industrial design department.
The journal also promotes and contributes to development of the concept of damage mechanics. This journal is a member of the Committee on Publication Ethics (COPE).