{"title":"季节性光周期对黄河鲤鱼生长、脂质代谢和抗氧化反应的影响","authors":"Wenqian Wang, Shengyan Su, Ping Dong, Wenrong Feng, Jianlin Li, Chengfeng Zhang, Yongkai Tang","doi":"10.3390/fishes8120595","DOIUrl":null,"url":null,"abstract":"Photoperiod is one of the most important environmental cues for organisms, and it plays a crucial role in regulating feeding, behavior, growth, and metabolism. However, seasonal photoperiods are often overlooked in carp culture or experiments, with a poorly understood effect on lipid metabolism and oxidative stress in fish. To explore the effects of seasonal photoperiods, we exposed Huanghe carp (Cyprinus carpio haematopterus) to summer photoperiod (14 h light:10 h dark) and winter photoperiod (10 h light:14 h dark) daylight conditions in an eight-week experiment. Our results suggested that the winter photoperiod significantly increased the liver TG level as well as the transcript levels of genes related to lipid synthesis, indicating that the lipid metabolism in Huanghe carp liver was enhanced compared to summer photoperiod conditions, and that lipid deposition may be responsible for the increase in body weight level and hepatosomatic index. Additionally, MDA, GSH, GSH-PX, and T-AOC levels were significantly elevated in the liver of fish under the winter photoperiod, suggesting that Huanghe carp responded to winter photoperiod exposure-induced oxidative stress in the liver by enhancing the antioxidant response. Based on transcriptome analysis, the winter photoperiod activated hepatic autophagy response and the FOXO signaling pathway in Huanghe carp. Combined with the correlation analysis, the Huanghe carp maintains the physiological health of the liver by activating the FOXO signaling pathway-mediated cell cycle regulation and autophagy response in response to oxidative stress during winter photoperiod exposure. Our study provides the first evidence for the physiological regulation of the liver in Huanghe carp under seasonal photoperiod stimulation.","PeriodicalId":12405,"journal":{"name":"Fishes","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effects of Seasonal Photoperiod on Growth, Lipid Metabolism, and Antioxidant Response in the Huanghe Carp (Cyprinus carpio haematopterus)\",\"authors\":\"Wenqian Wang, Shengyan Su, Ping Dong, Wenrong Feng, Jianlin Li, Chengfeng Zhang, Yongkai Tang\",\"doi\":\"10.3390/fishes8120595\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Photoperiod is one of the most important environmental cues for organisms, and it plays a crucial role in regulating feeding, behavior, growth, and metabolism. However, seasonal photoperiods are often overlooked in carp culture or experiments, with a poorly understood effect on lipid metabolism and oxidative stress in fish. To explore the effects of seasonal photoperiods, we exposed Huanghe carp (Cyprinus carpio haematopterus) to summer photoperiod (14 h light:10 h dark) and winter photoperiod (10 h light:14 h dark) daylight conditions in an eight-week experiment. Our results suggested that the winter photoperiod significantly increased the liver TG level as well as the transcript levels of genes related to lipid synthesis, indicating that the lipid metabolism in Huanghe carp liver was enhanced compared to summer photoperiod conditions, and that lipid deposition may be responsible for the increase in body weight level and hepatosomatic index. Additionally, MDA, GSH, GSH-PX, and T-AOC levels were significantly elevated in the liver of fish under the winter photoperiod, suggesting that Huanghe carp responded to winter photoperiod exposure-induced oxidative stress in the liver by enhancing the antioxidant response. Based on transcriptome analysis, the winter photoperiod activated hepatic autophagy response and the FOXO signaling pathway in Huanghe carp. Combined with the correlation analysis, the Huanghe carp maintains the physiological health of the liver by activating the FOXO signaling pathway-mediated cell cycle regulation and autophagy response in response to oxidative stress during winter photoperiod exposure. Our study provides the first evidence for the physiological regulation of the liver in Huanghe carp under seasonal photoperiod stimulation.\",\"PeriodicalId\":12405,\"journal\":{\"name\":\"Fishes\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2023-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fishes\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.3390/fishes8120595\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"FISHERIES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fishes","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.3390/fishes8120595","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"FISHERIES","Score":null,"Total":0}
Effects of Seasonal Photoperiod on Growth, Lipid Metabolism, and Antioxidant Response in the Huanghe Carp (Cyprinus carpio haematopterus)
Photoperiod is one of the most important environmental cues for organisms, and it plays a crucial role in regulating feeding, behavior, growth, and metabolism. However, seasonal photoperiods are often overlooked in carp culture or experiments, with a poorly understood effect on lipid metabolism and oxidative stress in fish. To explore the effects of seasonal photoperiods, we exposed Huanghe carp (Cyprinus carpio haematopterus) to summer photoperiod (14 h light:10 h dark) and winter photoperiod (10 h light:14 h dark) daylight conditions in an eight-week experiment. Our results suggested that the winter photoperiod significantly increased the liver TG level as well as the transcript levels of genes related to lipid synthesis, indicating that the lipid metabolism in Huanghe carp liver was enhanced compared to summer photoperiod conditions, and that lipid deposition may be responsible for the increase in body weight level and hepatosomatic index. Additionally, MDA, GSH, GSH-PX, and T-AOC levels were significantly elevated in the liver of fish under the winter photoperiod, suggesting that Huanghe carp responded to winter photoperiod exposure-induced oxidative stress in the liver by enhancing the antioxidant response. Based on transcriptome analysis, the winter photoperiod activated hepatic autophagy response and the FOXO signaling pathway in Huanghe carp. Combined with the correlation analysis, the Huanghe carp maintains the physiological health of the liver by activating the FOXO signaling pathway-mediated cell cycle regulation and autophagy response in response to oxidative stress during winter photoperiod exposure. Our study provides the first evidence for the physiological regulation of the liver in Huanghe carp under seasonal photoperiod stimulation.