填充 CNT@RC2540 纳米胶囊的聚醚-醚-酮复合材料的自润滑性能

IF 3.1 3区 工程技术 Q2 ENGINEERING, MECHANICAL Lubricants Pub Date : 2023-12-01 DOI:10.3390/lubricants11120511
Jiju Guan, Zhengya Xu, Lei Zheng, Lanyu Yang, Shuiquan Huang
{"title":"填充 CNT@RC2540 纳米胶囊的聚醚-醚-酮复合材料的自润滑性能","authors":"Jiju Guan, Zhengya Xu, Lei Zheng, Lanyu Yang, Shuiquan Huang","doi":"10.3390/lubricants11120511","DOIUrl":null,"url":null,"abstract":"Polyether-ether-ketone (PEEK) exhibits great potential in being a replacement for metal components across various applications relying on the mechanical and tribological properties. However, there is still much to be done to improve its properties. The main motivation of this paper is to improve the tribological and mechanical properties of PEEK simultaneously for more severe working environment. Therefore, dialkyl pentasulfide (RC2540) was proposed to fill into the cavity of CNTs to prepare nano-capsules, which were then filled into PEEK to prepare PEEK/nano-capsules composites. The existence of nano-capsules in PEEK was analyzed, and the friction and wear properties exhibited by PEEK composites against GCr15 steel were examined using pin-disk friction pairs, and the self-lubricating mechanism of PEEK composites in friction was revealed. Findings of this study indicated that when the mass fraction of nano-capsules was less than 5%, the filling of nano-capsules could improve the tensile strength of PEEK and reduced the friction coefficient and specific wear rate of PEEK by filling nano-capsules. During the friction process, RC2540 in the nano-capsules can be released as PEEK wears so that a self-lubricating layer can be formed for reducing PEEK composites’ friction and wear.","PeriodicalId":18135,"journal":{"name":"Lubricants","volume":" February","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Self-Lubricating Properties of Polyether-Ether-Ketone Composites Filled with CNTs@RC2540 Nano-Capsules\",\"authors\":\"Jiju Guan, Zhengya Xu, Lei Zheng, Lanyu Yang, Shuiquan Huang\",\"doi\":\"10.3390/lubricants11120511\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Polyether-ether-ketone (PEEK) exhibits great potential in being a replacement for metal components across various applications relying on the mechanical and tribological properties. However, there is still much to be done to improve its properties. The main motivation of this paper is to improve the tribological and mechanical properties of PEEK simultaneously for more severe working environment. Therefore, dialkyl pentasulfide (RC2540) was proposed to fill into the cavity of CNTs to prepare nano-capsules, which were then filled into PEEK to prepare PEEK/nano-capsules composites. The existence of nano-capsules in PEEK was analyzed, and the friction and wear properties exhibited by PEEK composites against GCr15 steel were examined using pin-disk friction pairs, and the self-lubricating mechanism of PEEK composites in friction was revealed. Findings of this study indicated that when the mass fraction of nano-capsules was less than 5%, the filling of nano-capsules could improve the tensile strength of PEEK and reduced the friction coefficient and specific wear rate of PEEK by filling nano-capsules. During the friction process, RC2540 in the nano-capsules can be released as PEEK wears so that a self-lubricating layer can be formed for reducing PEEK composites’ friction and wear.\",\"PeriodicalId\":18135,\"journal\":{\"name\":\"Lubricants\",\"volume\":\" February\",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2023-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Lubricants\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/lubricants11120511\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lubricants","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/lubricants11120511","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

摘要

聚醚醚酮(PEEK)凭借其机械和摩擦学性能,在各种应用中显示出巨大的潜力,可以替代金属部件。然而,在改进其性能方面仍有许多工作要做。本文的主要动机是同时改善PEEK的摩擦学和力学性能,以适应更恶劣的工作环境。因此,我们提出将二烷基五硫醚(RC2540)填充到CNTs的空腔中制备纳米胶囊,然后将其填充到PEEK中制备PEEK/纳米胶囊复合材料。分析了PEEK中纳米胶囊的存在,采用销盘摩擦副研究了PEEK复合材料对GCr15钢的摩擦磨损性能,揭示了PEEK复合材料在摩擦中的自润滑机理。研究结果表明,当纳米胶囊的质量分数小于5%时,填充纳米胶囊可以提高PEEK的拉伸强度,并通过填充纳米胶囊降低PEEK的摩擦系数和比磨损率。在摩擦过程中,纳米胶囊中的RC2540随着PEEK的磨损而释放,形成自润滑层,减少PEEK复合材料的摩擦磨损。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Self-Lubricating Properties of Polyether-Ether-Ketone Composites Filled with CNTs@RC2540 Nano-Capsules
Polyether-ether-ketone (PEEK) exhibits great potential in being a replacement for metal components across various applications relying on the mechanical and tribological properties. However, there is still much to be done to improve its properties. The main motivation of this paper is to improve the tribological and mechanical properties of PEEK simultaneously for more severe working environment. Therefore, dialkyl pentasulfide (RC2540) was proposed to fill into the cavity of CNTs to prepare nano-capsules, which were then filled into PEEK to prepare PEEK/nano-capsules composites. The existence of nano-capsules in PEEK was analyzed, and the friction and wear properties exhibited by PEEK composites against GCr15 steel were examined using pin-disk friction pairs, and the self-lubricating mechanism of PEEK composites in friction was revealed. Findings of this study indicated that when the mass fraction of nano-capsules was less than 5%, the filling of nano-capsules could improve the tensile strength of PEEK and reduced the friction coefficient and specific wear rate of PEEK by filling nano-capsules. During the friction process, RC2540 in the nano-capsules can be released as PEEK wears so that a self-lubricating layer can be formed for reducing PEEK composites’ friction and wear.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Lubricants
Lubricants Engineering-Mechanical Engineering
CiteScore
3.60
自引率
25.70%
发文量
293
审稿时长
11 weeks
期刊介绍: This journal is dedicated to the field of Tribology and closely related disciplines. This includes the fundamentals of the following topics: -Lubrication, comprising hydrostatics, hydrodynamics, elastohydrodynamics, mixed and boundary regimes of lubrication -Friction, comprising viscous shear, Newtonian and non-Newtonian traction, boundary friction -Wear, including adhesion, abrasion, tribo-corrosion, scuffing and scoring -Cavitation and erosion -Sub-surface stressing, fatigue spalling, pitting, micro-pitting -Contact Mechanics: elasticity, elasto-plasticity, adhesion, viscoelasticity, poroelasticity, coatings and solid lubricants, layered bonded and unbonded solids -Surface Science: topography, tribo-film formation, lubricant–surface combination, surface texturing, micro-hydrodynamics, micro-elastohydrodynamics -Rheology: Newtonian, non-Newtonian fluids, dilatants, pseudo-plastics, thixotropy, shear thinning -Physical chemistry of lubricants, boundary active species, adsorption, bonding
期刊最新文献
Effect of a Substrate’s Preheating Temperature on the Microstructure and Properties of Ni-Based Alloy Coatings Effect of Operating Parameters on the Mulching Device Wear Behavior of a Ridging and Mulching Machine A Generalised Method for Friction Optimisation of Surface Textured Seals by Machine Learning Influence of 1-Ethyl-3-methylimidazolium Diethylphosphate Ionic Liquid on the Performance of Eu- and Gd-Doped Diamond-like Carbon Coatings The Effect of Slider Configuration on Lubricant Depletion at the Slider/Disk Contact Interface
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1