应用 GAN 提高 LWD 实时图像日志的分辨率,为决策提供支持

W. Trevizan, Candida Menezes de Jesus
{"title":"应用 GAN 提高 LWD 实时图像日志的分辨率,为决策提供支持","authors":"W. Trevizan, Candida Menezes de Jesus","doi":"10.30632/pjv64n6-2023a6","DOIUrl":null,"url":null,"abstract":"In the current scenario of project management, where the agility and optimization of operations have been prioritized, the practice of logging while drilling (LWD) has gained space compared to traditional wireline logging. In theory, acquiring quality petrophysical properties during drilling brings greater agility in decision making about completion and optimizes operation costs. However, regarding borehole image logs, due to limitations in transmission capacity, the actual available data in real time contain about 50% (for resistivity images) of the full azimuth information, being insufficient for the identification of critical geological structures capable of impacting the communication between production or injection zones or the quality of cementation, such as fractures, caves, and geomechanical collapse zones. The tool’s memory data with the full information may take a few days after the end of drilling to be delivered by the service company, which in some cases is not enough for fast decision making regarding completion. In this work, we tested models based on generative adversarial neural networks (GANs) to reconstruct the complete memory data based on real-time input. As in conventional GAN schemes, a generator is trained to receive a real-time input and create a “memory-like” image, while a discriminator is trained to tell real and fake images apart. To regularize the convergence of training, we used an architecture known in the literature as CycleGAN, where another generator-discriminator pair is trained simultaneously to do the reverse process, recreating the real-time data. Variations of the training process and data sets were used to generate different CycleGAN models. They were trained using logs of presalt reservoirs in Buzios Field, and performance was assessed on logging intervals not seen by the algorithms during training. The results achieved so far have been very promising, as in certain intervals, resultant models were able to capture the presence of fractures and caves. This methodology represents a way of circumventing telemetry limitations, where missing information is added indirectly to the real-time data as the artificial intelligence (AI) algorithm learns the main characteristics of a field/reservoir. Therefore, previous knowledge from the field can be used to continuously optimize future operations, efficiently incorporating the available database into the workflow of petrophysicists for the recognition of geological and geomechanical structures in time to support decision making in completion operations.","PeriodicalId":170688,"journal":{"name":"Petrophysics – The SPWLA Journal of Formation Evaluation and Reservoir Description","volume":" 83","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Application of GAN to Resolution Enhancement of LWD Real-Time Image Logs to Support Decision Making\",\"authors\":\"W. Trevizan, Candida Menezes de Jesus\",\"doi\":\"10.30632/pjv64n6-2023a6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the current scenario of project management, where the agility and optimization of operations have been prioritized, the practice of logging while drilling (LWD) has gained space compared to traditional wireline logging. In theory, acquiring quality petrophysical properties during drilling brings greater agility in decision making about completion and optimizes operation costs. However, regarding borehole image logs, due to limitations in transmission capacity, the actual available data in real time contain about 50% (for resistivity images) of the full azimuth information, being insufficient for the identification of critical geological structures capable of impacting the communication between production or injection zones or the quality of cementation, such as fractures, caves, and geomechanical collapse zones. The tool’s memory data with the full information may take a few days after the end of drilling to be delivered by the service company, which in some cases is not enough for fast decision making regarding completion. In this work, we tested models based on generative adversarial neural networks (GANs) to reconstruct the complete memory data based on real-time input. As in conventional GAN schemes, a generator is trained to receive a real-time input and create a “memory-like” image, while a discriminator is trained to tell real and fake images apart. To regularize the convergence of training, we used an architecture known in the literature as CycleGAN, where another generator-discriminator pair is trained simultaneously to do the reverse process, recreating the real-time data. Variations of the training process and data sets were used to generate different CycleGAN models. They were trained using logs of presalt reservoirs in Buzios Field, and performance was assessed on logging intervals not seen by the algorithms during training. The results achieved so far have been very promising, as in certain intervals, resultant models were able to capture the presence of fractures and caves. This methodology represents a way of circumventing telemetry limitations, where missing information is added indirectly to the real-time data as the artificial intelligence (AI) algorithm learns the main characteristics of a field/reservoir. Therefore, previous knowledge from the field can be used to continuously optimize future operations, efficiently incorporating the available database into the workflow of petrophysicists for the recognition of geological and geomechanical structures in time to support decision making in completion operations.\",\"PeriodicalId\":170688,\"journal\":{\"name\":\"Petrophysics – The SPWLA Journal of Formation Evaluation and Reservoir Description\",\"volume\":\" 83\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Petrophysics – The SPWLA Journal of Formation Evaluation and Reservoir Description\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.30632/pjv64n6-2023a6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Petrophysics – The SPWLA Journal of Formation Evaluation and Reservoir Description","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30632/pjv64n6-2023a6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在当前的项目管理中,作业的灵活性和优化性被优先考虑,与传统的电缆测井相比,随钻测井(LWD)的实践获得了更多的空间。理论上,在钻井过程中获得高质量的岩石物理性质,可以提高完井决策的灵活性,并优化作业成本。然而,对于井眼图像测井,由于传输能力的限制,实际可用的实时数据包含约50%的全方位信息(对于电阻率图像),不足以识别能够影响生产区或注入区之间通信或胶结质量的关键地质构造,例如裂缝,洞穴和地质力学崩塌带。在钻井结束后,服务公司可能需要几天时间才能将包含完整信息的工具内存数据交付给服务公司,在某些情况下,这些数据不足以快速做出完井决策。在这项工作中,我们测试了基于生成对抗神经网络(gan)的模型,以重建基于实时输入的完整记忆数据。在传统的GAN方案中,生成器被训练来接收实时输入并创建一个“类似记忆”的图像,而鉴别器被训练来区分真实和虚假的图像。为了规范训练的收敛性,我们使用了文献中称为CycleGAN的架构,其中同时训练另一个生成器-鉴别器对以执行相反的过程,重新创建实时数据。训练过程和数据集的变化被用来生成不同的CycleGAN模型。他们使用Buzios油田盐下储层的测井曲线进行了训练,并在训练期间对算法未看到的测井间隔进行了性能评估。到目前为止取得的结果非常有希望,因为在某些区间,所得模型能够捕捉到裂缝和洞穴的存在。这种方法是一种规避遥测限制的方法,在遥测中,人工智能(AI)算法学习油田/油藏的主要特征时,将缺失的信息间接添加到实时数据中。因此,以前的现场知识可以用来持续优化未来的作业,有效地将可用的数据库整合到岩石物理学家的工作流程中,以便及时识别地质和地质力学结构,以支持完井作业的决策。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Application of GAN to Resolution Enhancement of LWD Real-Time Image Logs to Support Decision Making
In the current scenario of project management, where the agility and optimization of operations have been prioritized, the practice of logging while drilling (LWD) has gained space compared to traditional wireline logging. In theory, acquiring quality petrophysical properties during drilling brings greater agility in decision making about completion and optimizes operation costs. However, regarding borehole image logs, due to limitations in transmission capacity, the actual available data in real time contain about 50% (for resistivity images) of the full azimuth information, being insufficient for the identification of critical geological structures capable of impacting the communication between production or injection zones or the quality of cementation, such as fractures, caves, and geomechanical collapse zones. The tool’s memory data with the full information may take a few days after the end of drilling to be delivered by the service company, which in some cases is not enough for fast decision making regarding completion. In this work, we tested models based on generative adversarial neural networks (GANs) to reconstruct the complete memory data based on real-time input. As in conventional GAN schemes, a generator is trained to receive a real-time input and create a “memory-like” image, while a discriminator is trained to tell real and fake images apart. To regularize the convergence of training, we used an architecture known in the literature as CycleGAN, where another generator-discriminator pair is trained simultaneously to do the reverse process, recreating the real-time data. Variations of the training process and data sets were used to generate different CycleGAN models. They were trained using logs of presalt reservoirs in Buzios Field, and performance was assessed on logging intervals not seen by the algorithms during training. The results achieved so far have been very promising, as in certain intervals, resultant models were able to capture the presence of fractures and caves. This methodology represents a way of circumventing telemetry limitations, where missing information is added indirectly to the real-time data as the artificial intelligence (AI) algorithm learns the main characteristics of a field/reservoir. Therefore, previous knowledge from the field can be used to continuously optimize future operations, efficiently incorporating the available database into the workflow of petrophysicists for the recognition of geological and geomechanical structures in time to support decision making in completion operations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Automatic Geological Facies Analysis in Crust-Mantle Transition Zone Petrophysical Analyses for Supporting the Search for a Claystone-Hosted Nuclear Repository A New R35 and Fractal Joint Rock Typing Method Using MICP Analysis: A Case Study in Middle East Iraq Nuclear Logging in Geological Probing for a Low-Carbon Energy Future – A New Frontier? Underground Hydrogen Storage in Porous Media: The Potential Role of Petrophysics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1