天然产品不对称合成中的手性羟肟酸配体

Q3 Chemistry Chemistry Pub Date : 2023-12-01 DOI:10.3390/chemistry5040174
T. Pawar, Karla Irazu Ventura-Hernández, F. R. Ramos-Morales, J. L. Olivares-Romero
{"title":"天然产品不对称合成中的手性羟肟酸配体","authors":"T. Pawar, Karla Irazu Ventura-Hernández, F. R. Ramos-Morales, J. L. Olivares-Romero","doi":"10.3390/chemistry5040174","DOIUrl":null,"url":null,"abstract":"Chiral hydroxamic acid (HA) and bis-hydroxamic acid (BHA) ligands have made significant contributions to the field of asymmetric synthesis, particularly in the synthesis of natural products. These ligands possess unique molecular structures that allow for exceptional stereochemical control, leading to their widespread use in catalytic systems. This review highlights the advancements made in asymmetric synthesis using chiral hydroxamic acid and bis-hydroxamic acid ligands and their impact on the synthesis of complex natural products. This discussion encompasses their role in enantioselective C–C bond formation, the functionalization of C–H bonds, the asymmetric transformations involving heteroatoms, and their application in the total synthesis of natural products. The versatility and efficiency of chiral hydroxamic acid ligands and bis-hydroxamic acid ligands make them invaluable tools for synthetic chemists working towards the efficient and selective synthesis of natural products. This review provides a comprehensive overview of their contributions, showcasing their potential to expand the boundaries of chemical synthesis and access the diverse array of natural product scaffolds.","PeriodicalId":9850,"journal":{"name":"Chemistry","volume":" 7","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Chiral Hydroxamic Acid Ligands in the Asymmetric Synthesis of Natural Products\",\"authors\":\"T. Pawar, Karla Irazu Ventura-Hernández, F. R. Ramos-Morales, J. L. Olivares-Romero\",\"doi\":\"10.3390/chemistry5040174\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Chiral hydroxamic acid (HA) and bis-hydroxamic acid (BHA) ligands have made significant contributions to the field of asymmetric synthesis, particularly in the synthesis of natural products. These ligands possess unique molecular structures that allow for exceptional stereochemical control, leading to their widespread use in catalytic systems. This review highlights the advancements made in asymmetric synthesis using chiral hydroxamic acid and bis-hydroxamic acid ligands and their impact on the synthesis of complex natural products. This discussion encompasses their role in enantioselective C–C bond formation, the functionalization of C–H bonds, the asymmetric transformations involving heteroatoms, and their application in the total synthesis of natural products. The versatility and efficiency of chiral hydroxamic acid ligands and bis-hydroxamic acid ligands make them invaluable tools for synthetic chemists working towards the efficient and selective synthesis of natural products. This review provides a comprehensive overview of their contributions, showcasing their potential to expand the boundaries of chemical synthesis and access the diverse array of natural product scaffolds.\",\"PeriodicalId\":9850,\"journal\":{\"name\":\"Chemistry\",\"volume\":\" 7\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemistry\",\"FirstCategoryId\":\"1089\",\"ListUrlMain\":\"https://doi.org/10.3390/chemistry5040174\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Chemistry\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemistry","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.3390/chemistry5040174","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Chemistry","Score":null,"Total":0}
引用次数: 0

摘要

手性羟肟酸(HA)和双羟肟酸(BHA)配体在不对称合成领域,特别是在天然产物的合成中做出了重要贡献。这些配体具有独特的分子结构,允许特殊的立体化学控制,导致它们在催化系统中的广泛应用。本文综述了手性羟肟酸和双羟肟酸配体在不对称合成方面的研究进展及其对复杂天然产物合成的影响。本文讨论了它们在对映选择性C-C键的形成、C-H键的功能化、涉及杂原子的不对称转化以及它们在天然产物全合成中的应用。手性羟肟酸配体和双羟肟酸配体的多功能性和效率使它们成为合成化学家致力于高效和选择性合成天然产物的宝贵工具。这篇综述提供了他们的贡献的全面概述,展示了他们的潜力,以扩大化学合成的边界和获取多样化的天然产物支架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Chiral Hydroxamic Acid Ligands in the Asymmetric Synthesis of Natural Products
Chiral hydroxamic acid (HA) and bis-hydroxamic acid (BHA) ligands have made significant contributions to the field of asymmetric synthesis, particularly in the synthesis of natural products. These ligands possess unique molecular structures that allow for exceptional stereochemical control, leading to their widespread use in catalytic systems. This review highlights the advancements made in asymmetric synthesis using chiral hydroxamic acid and bis-hydroxamic acid ligands and their impact on the synthesis of complex natural products. This discussion encompasses their role in enantioselective C–C bond formation, the functionalization of C–H bonds, the asymmetric transformations involving heteroatoms, and their application in the total synthesis of natural products. The versatility and efficiency of chiral hydroxamic acid ligands and bis-hydroxamic acid ligands make them invaluable tools for synthetic chemists working towards the efficient and selective synthesis of natural products. This review provides a comprehensive overview of their contributions, showcasing their potential to expand the boundaries of chemical synthesis and access the diverse array of natural product scaffolds.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.50
自引率
0.00%
发文量
0
审稿时长
11 weeks
期刊介绍: Chemistry—A European Journal is a truly international journal with top quality contributions (2017 ISI Impact Factor: 5.16). It publishes a wide range of outstanding Reviews, Minireviews, Concepts, Full Papers, and Communications from all areas of chemistry and related fields.
期刊最新文献
Photodynamic Action of Synthetic Curcuminoids against Staphylococcus aureus: Experimental and Computational Evaluation Azidoindolines—From Synthesis to Application: A Review Correction: Bagchi et al. Effects of Carboxyl Functionalized CNT on Electrochemical Behaviour of Polyluminol-CNT Composites. Chemistry 2022, 4, 1561–1575 Phytochemistry, Anti-Tyrosinase, and Anti-Diabetes Studies of Extracts and Chemical Constituents of Dicerothamnus rhinocerotis Leaves Recent Advances in Applied Electrochemistry: A Review
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1