{"title":"右移超级暴风圈与左移超级暴风圈后翼外流相互作用过程中的龙卷风生成情况","authors":"Roger Edwards, Richard L. Thompson","doi":"10.1175/waf-d-23-0075.1","DOIUrl":null,"url":null,"abstract":"\nOn the local afternoon of 29 May 2012, a long-lived, right-moving (RM) supercell formed over northwestern Oklahoma and turned roughly southeastward. For >3 h, as it moved toward the Oklahoma City metro area, this supercell remained nontornadic and visually high-based, producing a nearly tornadic gustnado and a swath of significantly severe, sometimes giant hail up to 5 in (12.7 cm) in diameter. Meanwhile, a left-moving (LM) supercell formed over southwestern Oklahoma about 100 mi (161 km) south-southwest of the RM storm, and moved northeastward, with a rear-flank gust front that became well-defined on radar imagery as the LM storm approached southern and central parts of the metro. The authors, who had been observing the RM supercell in the field since genesis, surmised its potential future interaction with the LM storm’s trailing gust front about 1 h beforehand. We repositioned to near the gust front’s extrapolated collision point with the RM mesocyclone, in anticipation of maximized tornado potential, then witnessed a small tornado from the RM mesocyclone immediately following its interception of the boundary. Synchronized radar and photographic images of this remarkable sequence are presented and discussed in context of more recent findings on tornadic supercell/boundary interactions, with implications for operational utility.","PeriodicalId":49369,"journal":{"name":"Weather and Forecasting","volume":" 22","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Right-Moving Supercell Tornadogenesis during Interaction with a Left-Moving Supercell’s Rear-Flank Outflow\",\"authors\":\"Roger Edwards, Richard L. Thompson\",\"doi\":\"10.1175/waf-d-23-0075.1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\nOn the local afternoon of 29 May 2012, a long-lived, right-moving (RM) supercell formed over northwestern Oklahoma and turned roughly southeastward. For >3 h, as it moved toward the Oklahoma City metro area, this supercell remained nontornadic and visually high-based, producing a nearly tornadic gustnado and a swath of significantly severe, sometimes giant hail up to 5 in (12.7 cm) in diameter. Meanwhile, a left-moving (LM) supercell formed over southwestern Oklahoma about 100 mi (161 km) south-southwest of the RM storm, and moved northeastward, with a rear-flank gust front that became well-defined on radar imagery as the LM storm approached southern and central parts of the metro. The authors, who had been observing the RM supercell in the field since genesis, surmised its potential future interaction with the LM storm’s trailing gust front about 1 h beforehand. We repositioned to near the gust front’s extrapolated collision point with the RM mesocyclone, in anticipation of maximized tornado potential, then witnessed a small tornado from the RM mesocyclone immediately following its interception of the boundary. Synchronized radar and photographic images of this remarkable sequence are presented and discussed in context of more recent findings on tornadic supercell/boundary interactions, with implications for operational utility.\",\"PeriodicalId\":49369,\"journal\":{\"name\":\"Weather and Forecasting\",\"volume\":\" 22\",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2023-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Weather and Forecasting\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1175/waf-d-23-0075.1\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Weather and Forecasting","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1175/waf-d-23-0075.1","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
Right-Moving Supercell Tornadogenesis during Interaction with a Left-Moving Supercell’s Rear-Flank Outflow
On the local afternoon of 29 May 2012, a long-lived, right-moving (RM) supercell formed over northwestern Oklahoma and turned roughly southeastward. For >3 h, as it moved toward the Oklahoma City metro area, this supercell remained nontornadic and visually high-based, producing a nearly tornadic gustnado and a swath of significantly severe, sometimes giant hail up to 5 in (12.7 cm) in diameter. Meanwhile, a left-moving (LM) supercell formed over southwestern Oklahoma about 100 mi (161 km) south-southwest of the RM storm, and moved northeastward, with a rear-flank gust front that became well-defined on radar imagery as the LM storm approached southern and central parts of the metro. The authors, who had been observing the RM supercell in the field since genesis, surmised its potential future interaction with the LM storm’s trailing gust front about 1 h beforehand. We repositioned to near the gust front’s extrapolated collision point with the RM mesocyclone, in anticipation of maximized tornado potential, then witnessed a small tornado from the RM mesocyclone immediately following its interception of the boundary. Synchronized radar and photographic images of this remarkable sequence are presented and discussed in context of more recent findings on tornadic supercell/boundary interactions, with implications for operational utility.
期刊介绍:
Weather and Forecasting (WAF) (ISSN: 0882-8156; eISSN: 1520-0434) publishes research that is relevant to operational forecasting. This includes papers on significant weather events, forecasting techniques, forecast verification, model parameterizations, data assimilation, model ensembles, statistical postprocessing techniques, the transfer of research results to the forecasting community, and the societal use and value of forecasts. The scope of WAF includes research relevant to forecast lead times ranging from short-term “nowcasts” through seasonal time scales out to approximately two years.