利用图像深度学习技术检测作物病害

Kinjal Vijaybhai Deputy, K. Passi, Chakresh Kumar Jain
{"title":"利用图像深度学习技术检测作物病害","authors":"Kinjal Vijaybhai Deputy, K. Passi, Chakresh Kumar Jain","doi":"10.3844/jcssp.2023.1438.1449","DOIUrl":null,"url":null,"abstract":": Agriculture plays a crucial role in the economic development of many countries and sustains the global population despite facing various challenges like climate change, pollinator decline, and plant diseases. These threats to food security highlight the need for innovative solutions to prevent crop loss. Leveraging smartphone technology for automated image recognition-based disease diagnosis has emerged as a promising approach, thanks to their computing power and high-resolution cameras. To address this issue, we have focused on deep learning-based image detection techniques to identify plant diseases using the \"PlantVillage\" dataset. Several deep learning architectures, including AlexNet, GoogleNet, ResNet50, and InceptionV3, were employed and trained using two approaches: 'Training from scratch' and 'transfer learning’. The results of the analysis reveal GoogLeNet architecture achieved the highest accuracy of 0.999 for color images and 0.996 for segmented images, whereas InceptionV3 trained from scratch gave the highest accuracy of 0.994 for grayscale images with a train-test ratio of 90:10. All the models trained from scratch achieved the maximum F1-score of 1.0 for color and segmented images whereas for grayscale images, GoogleNet and InceptionV3 achieved the highest F1-score of 0.999 with train-test ratio 90:10. These findings indicate the potential of deep learning methods in detecting and diagnosing plant diseases, which can significantly enhance the efficiency and accuracy of disease diagnosis processes in agriculture. Further research and improvements in image recognition techniques can lead to more robust and effective solutions for securing global food production.","PeriodicalId":40005,"journal":{"name":"Journal of Computer Science","volume":" 6","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Crop Disease Detection Using Deep Learning Techniques on Images\",\"authors\":\"Kinjal Vijaybhai Deputy, K. Passi, Chakresh Kumar Jain\",\"doi\":\"10.3844/jcssp.2023.1438.1449\",\"DOIUrl\":null,\"url\":null,\"abstract\":\": Agriculture plays a crucial role in the economic development of many countries and sustains the global population despite facing various challenges like climate change, pollinator decline, and plant diseases. These threats to food security highlight the need for innovative solutions to prevent crop loss. Leveraging smartphone technology for automated image recognition-based disease diagnosis has emerged as a promising approach, thanks to their computing power and high-resolution cameras. To address this issue, we have focused on deep learning-based image detection techniques to identify plant diseases using the \\\"PlantVillage\\\" dataset. Several deep learning architectures, including AlexNet, GoogleNet, ResNet50, and InceptionV3, were employed and trained using two approaches: 'Training from scratch' and 'transfer learning’. The results of the analysis reveal GoogLeNet architecture achieved the highest accuracy of 0.999 for color images and 0.996 for segmented images, whereas InceptionV3 trained from scratch gave the highest accuracy of 0.994 for grayscale images with a train-test ratio of 90:10. All the models trained from scratch achieved the maximum F1-score of 1.0 for color and segmented images whereas for grayscale images, GoogleNet and InceptionV3 achieved the highest F1-score of 0.999 with train-test ratio 90:10. These findings indicate the potential of deep learning methods in detecting and diagnosing plant diseases, which can significantly enhance the efficiency and accuracy of disease diagnosis processes in agriculture. Further research and improvements in image recognition techniques can lead to more robust and effective solutions for securing global food production.\",\"PeriodicalId\":40005,\"journal\":{\"name\":\"Journal of Computer Science\",\"volume\":\" 6\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computer Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3844/jcssp.2023.1438.1449\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3844/jcssp.2023.1438.1449","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

农业在许多国家的经济发展中发挥着至关重要的作用,尽管面临着气候变化、传粉媒介减少和植物病害等各种挑战,但农业仍维持着全球人口。这些对粮食安全的威胁突出表明需要创新的解决方案来防止作物损失。由于智能手机的计算能力和高分辨率摄像头,利用智能手机技术进行基于图像识别的自动疾病诊断已经成为一种很有前途的方法。为了解决这个问题,我们专注于基于深度学习的图像检测技术,利用“PlantVillage”数据集识别植物病害。几个深度学习架构,包括AlexNet、GoogleNet、ResNet50和InceptionV3,使用两种方法进行训练:“从头开始训练”和“迁移学习”。分析结果表明,GoogLeNet架构在彩色图像和分割图像上的准确率最高,分别为0.999和0.996,而从头训练的InceptionV3在灰度图像上的准确率最高,为0.994,训练测试比为90:10。所有从头开始训练的模型在彩色和分割图像上的f1得分最高为1.0,而在灰度图像上,GoogleNet和InceptionV3的f1得分最高为0.999,训练测试比为90:10。这些发现表明,深度学习方法在植物病害检测和诊断方面具有潜力,可以显著提高农业病害诊断过程的效率和准确性。图像识别技术的进一步研究和改进可以为确保全球粮食生产提供更强大和有效的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Crop Disease Detection Using Deep Learning Techniques on Images
: Agriculture plays a crucial role in the economic development of many countries and sustains the global population despite facing various challenges like climate change, pollinator decline, and plant diseases. These threats to food security highlight the need for innovative solutions to prevent crop loss. Leveraging smartphone technology for automated image recognition-based disease diagnosis has emerged as a promising approach, thanks to their computing power and high-resolution cameras. To address this issue, we have focused on deep learning-based image detection techniques to identify plant diseases using the "PlantVillage" dataset. Several deep learning architectures, including AlexNet, GoogleNet, ResNet50, and InceptionV3, were employed and trained using two approaches: 'Training from scratch' and 'transfer learning’. The results of the analysis reveal GoogLeNet architecture achieved the highest accuracy of 0.999 for color images and 0.996 for segmented images, whereas InceptionV3 trained from scratch gave the highest accuracy of 0.994 for grayscale images with a train-test ratio of 90:10. All the models trained from scratch achieved the maximum F1-score of 1.0 for color and segmented images whereas for grayscale images, GoogleNet and InceptionV3 achieved the highest F1-score of 0.999 with train-test ratio 90:10. These findings indicate the potential of deep learning methods in detecting and diagnosing plant diseases, which can significantly enhance the efficiency and accuracy of disease diagnosis processes in agriculture. Further research and improvements in image recognition techniques can lead to more robust and effective solutions for securing global food production.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Computer Science
Journal of Computer Science Computer Science-Computer Networks and Communications
CiteScore
1.70
自引率
0.00%
发文量
92
期刊介绍: Journal of Computer Science is aimed to publish research articles on theoretical foundations of information and computation, and of practical techniques for their implementation and application in computer systems. JCS updated twelve times a year and is a peer reviewed journal covers the latest and most compelling research of the time.
期刊最新文献
Features of the Security System Development of a Computer Telecommunication Network Performance Assessment of CPU Scheduling Algorithms: A Scenario-Based Approach with FCFS, RR, and SJF Website-Based Educational Application to Help MSMEs in Indonesia Develop A Multi-Split Cross-Strategy for Enhancing Machine Learning Algorithms Prediction Results with Data Generated by Conditional Generative Adversarial Network Improving the Detection of Mask-Wearing Mistakes by Deep Learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1