Qing ZHANG , Jin CHEN , Yingyue LI , Tao HUANG , Kailing XIE , Jing ZHOU , Xiaoyu LI
{"title":"Claroideoglomus etunicatum对莲花生长的影响:从调节根圈真菌群落的角度来看","authors":"Qing ZHANG , Jin CHEN , Yingyue LI , Tao HUANG , Kailing XIE , Jing ZHOU , Xiaoyu LI","doi":"10.1016/j.pedsph.2023.12.003","DOIUrl":null,"url":null,"abstract":"<div><p>Arbuscular mycorrhizal fungi (AMF) provide essential nutrients to crops and are affected by fertilizers. Phosphate-solubilizing bacteria (PSB), nitrogen-fixing bacteria (NFB), and AMF have mutually beneficial relationships with plants, but the effects of their interactions on plant growth by regulating rhizosphere fungal community have not been sufficiently studied. In this study, a greenhouse pot experiment was conducted to investigate the interactions between AMF and bacteria (PSB and NFB) on the growth of <em>Lotus corniculatus</em> L. Specifically, the role of rhizosphere fungal community in the growth of <em>Lotus corniculatus</em> L. was explored using Illumina MiSeq high-throughput sequencing. The results showed that combined inoculation of AMF with PSB and NFB increased plant biomass, plant height, and fungal colonization rate. The richness, complexity, and stability of rhizosphere fungal community also increased after combined inoculation of AMF with PSB and/or NFB, particularly with PSB. In addition, combined inoculation of AMF with PSB and NFB enriched the abundance of beneficial microorganisms, with <em>Chaetomium</em> and <em>Humicola</em> showing the greatest alterations. The structural equation model showed that the interactions of AMF with PSB and NFB promoted plant growth by affecting fungal network structure and soil enzyme activities involved in carbon, nitrogen, and phosphorus cycling. These findings provide evidence for the effects of interactions of AMF with PSB and NFB on rhizosphere fungal community and plant growth.</p></div>","PeriodicalId":49709,"journal":{"name":"Pedosphere","volume":"34 2","pages":"Pages 411-423"},"PeriodicalIF":5.2000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effects of interactions between arbuscular mycorrhizal fungi and bacteria on the growth of Lotus corniculatus L.: From the perspective of regulating rhizosphere fungal community\",\"authors\":\"Qing ZHANG , Jin CHEN , Yingyue LI , Tao HUANG , Kailing XIE , Jing ZHOU , Xiaoyu LI\",\"doi\":\"10.1016/j.pedsph.2023.12.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Arbuscular mycorrhizal fungi (AMF) provide essential nutrients to crops and are affected by fertilizers. Phosphate-solubilizing bacteria (PSB), nitrogen-fixing bacteria (NFB), and AMF have mutually beneficial relationships with plants, but the effects of their interactions on plant growth by regulating rhizosphere fungal community have not been sufficiently studied. In this study, a greenhouse pot experiment was conducted to investigate the interactions between AMF and bacteria (PSB and NFB) on the growth of <em>Lotus corniculatus</em> L. Specifically, the role of rhizosphere fungal community in the growth of <em>Lotus corniculatus</em> L. was explored using Illumina MiSeq high-throughput sequencing. The results showed that combined inoculation of AMF with PSB and NFB increased plant biomass, plant height, and fungal colonization rate. The richness, complexity, and stability of rhizosphere fungal community also increased after combined inoculation of AMF with PSB and/or NFB, particularly with PSB. In addition, combined inoculation of AMF with PSB and NFB enriched the abundance of beneficial microorganisms, with <em>Chaetomium</em> and <em>Humicola</em> showing the greatest alterations. The structural equation model showed that the interactions of AMF with PSB and NFB promoted plant growth by affecting fungal network structure and soil enzyme activities involved in carbon, nitrogen, and phosphorus cycling. These findings provide evidence for the effects of interactions of AMF with PSB and NFB on rhizosphere fungal community and plant growth.</p></div>\",\"PeriodicalId\":49709,\"journal\":{\"name\":\"Pedosphere\",\"volume\":\"34 2\",\"pages\":\"Pages 411-423\"},\"PeriodicalIF\":5.2000,\"publicationDate\":\"2024-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pedosphere\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1002016023001236\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"SOIL SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pedosphere","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1002016023001236","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SOIL SCIENCE","Score":null,"Total":0}
Effects of interactions between arbuscular mycorrhizal fungi and bacteria on the growth of Lotus corniculatus L.: From the perspective of regulating rhizosphere fungal community
Arbuscular mycorrhizal fungi (AMF) provide essential nutrients to crops and are affected by fertilizers. Phosphate-solubilizing bacteria (PSB), nitrogen-fixing bacteria (NFB), and AMF have mutually beneficial relationships with plants, but the effects of their interactions on plant growth by regulating rhizosphere fungal community have not been sufficiently studied. In this study, a greenhouse pot experiment was conducted to investigate the interactions between AMF and bacteria (PSB and NFB) on the growth of Lotus corniculatus L. Specifically, the role of rhizosphere fungal community in the growth of Lotus corniculatus L. was explored using Illumina MiSeq high-throughput sequencing. The results showed that combined inoculation of AMF with PSB and NFB increased plant biomass, plant height, and fungal colonization rate. The richness, complexity, and stability of rhizosphere fungal community also increased after combined inoculation of AMF with PSB and/or NFB, particularly with PSB. In addition, combined inoculation of AMF with PSB and NFB enriched the abundance of beneficial microorganisms, with Chaetomium and Humicola showing the greatest alterations. The structural equation model showed that the interactions of AMF with PSB and NFB promoted plant growth by affecting fungal network structure and soil enzyme activities involved in carbon, nitrogen, and phosphorus cycling. These findings provide evidence for the effects of interactions of AMF with PSB and NFB on rhizosphere fungal community and plant growth.
期刊介绍:
PEDOSPHERE—a peer-reviewed international journal published bimonthly in English—welcomes submissions from scientists around the world under a broad scope of topics relevant to timely, high quality original research findings, especially up-to-date achievements and advances in the entire field of soil science studies dealing with environmental science, ecology, agriculture, bioscience, geoscience, forestry, etc. It publishes mainly original research articles as well as some reviews, mini reviews, short communications and special issues.