Jared Estevanes, J. Tyler Davidson, Geraldine Monjardez
{"title":"研究共焦拉曼显微镜和实时直接分析质谱法 (DART-MS) 在分析未爆炸物方面的组合能力","authors":"Jared Estevanes, J. Tyler Davidson, Geraldine Monjardez","doi":"10.1016/j.forc.2023.100544","DOIUrl":null,"url":null,"abstract":"<div><p>The identification of organic and inorganic components used to produce homemade explosives (HMEs) remains a challenge for forensic analysts due to their diverse physicochemical properties that require different instrumentation. This study aims to explore the combined use of direct analysis in real time-mass spectrometry (DART-MS) and Raman microscopy to provide a rapid and reliable analysis of a variety of intact explosives with minimal sample preparation, including 2,4,6-trinitrotoluene (TNT), pentaerythritol tetranitrate (PETN), seven inorganic oxidizing salts, and five smokeless powder constituents. While both techniques were well-suited for the analysis of TNT and PETN, DART-MS had the advantage of being more sensitive compared to Raman spectroscopy for the identification of the organic components contained in smokeless powder. Even though the identification of ammonium-based salts using DART-MS could be achieved, the analysis of low-volatility compounds, such as the inorganic oxidizing salts, was more straightforward with Raman microscopy and did not require sample preparation. This study demonstrates the benefits and limitations of combining Raman microscopy and DART-MS for the analysis of intact explosives and precursors. Using this combined approach enabled the rapid identification of various organic and inorganic explosives and precursors with minimal sample preparation.</p></div>","PeriodicalId":324,"journal":{"name":"Forensic Chemistry","volume":"37 ","pages":"Article 100544"},"PeriodicalIF":2.6000,"publicationDate":"2023-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2468170923000802/pdfft?md5=e2aeb51984d880bb850a97c0a40a0323&pid=1-s2.0-S2468170923000802-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Investigating the combined capability of confocal Raman microscopy and direct analysis in real time-mass spectrometry (DART-MS) for the analysis of intact explosives\",\"authors\":\"Jared Estevanes, J. Tyler Davidson, Geraldine Monjardez\",\"doi\":\"10.1016/j.forc.2023.100544\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The identification of organic and inorganic components used to produce homemade explosives (HMEs) remains a challenge for forensic analysts due to their diverse physicochemical properties that require different instrumentation. This study aims to explore the combined use of direct analysis in real time-mass spectrometry (DART-MS) and Raman microscopy to provide a rapid and reliable analysis of a variety of intact explosives with minimal sample preparation, including 2,4,6-trinitrotoluene (TNT), pentaerythritol tetranitrate (PETN), seven inorganic oxidizing salts, and five smokeless powder constituents. While both techniques were well-suited for the analysis of TNT and PETN, DART-MS had the advantage of being more sensitive compared to Raman spectroscopy for the identification of the organic components contained in smokeless powder. Even though the identification of ammonium-based salts using DART-MS could be achieved, the analysis of low-volatility compounds, such as the inorganic oxidizing salts, was more straightforward with Raman microscopy and did not require sample preparation. This study demonstrates the benefits and limitations of combining Raman microscopy and DART-MS for the analysis of intact explosives and precursors. Using this combined approach enabled the rapid identification of various organic and inorganic explosives and precursors with minimal sample preparation.</p></div>\",\"PeriodicalId\":324,\"journal\":{\"name\":\"Forensic Chemistry\",\"volume\":\"37 \",\"pages\":\"Article 100544\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2023-12-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2468170923000802/pdfft?md5=e2aeb51984d880bb850a97c0a40a0323&pid=1-s2.0-S2468170923000802-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Forensic Chemistry\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2468170923000802\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Forensic Chemistry","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468170923000802","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
Investigating the combined capability of confocal Raman microscopy and direct analysis in real time-mass spectrometry (DART-MS) for the analysis of intact explosives
The identification of organic and inorganic components used to produce homemade explosives (HMEs) remains a challenge for forensic analysts due to their diverse physicochemical properties that require different instrumentation. This study aims to explore the combined use of direct analysis in real time-mass spectrometry (DART-MS) and Raman microscopy to provide a rapid and reliable analysis of a variety of intact explosives with minimal sample preparation, including 2,4,6-trinitrotoluene (TNT), pentaerythritol tetranitrate (PETN), seven inorganic oxidizing salts, and five smokeless powder constituents. While both techniques were well-suited for the analysis of TNT and PETN, DART-MS had the advantage of being more sensitive compared to Raman spectroscopy for the identification of the organic components contained in smokeless powder. Even though the identification of ammonium-based salts using DART-MS could be achieved, the analysis of low-volatility compounds, such as the inorganic oxidizing salts, was more straightforward with Raman microscopy and did not require sample preparation. This study demonstrates the benefits and limitations of combining Raman microscopy and DART-MS for the analysis of intact explosives and precursors. Using this combined approach enabled the rapid identification of various organic and inorganic explosives and precursors with minimal sample preparation.
期刊介绍:
Forensic Chemistry publishes high quality manuscripts focusing on the theory, research and application of any chemical science to forensic analysis. The scope of the journal includes fundamental advancements that result in a better understanding of the evidentiary significance derived from the physical and chemical analysis of materials. The scope of Forensic Chemistry will also include the application and or development of any molecular and atomic spectrochemical technique, electrochemical techniques, sensors, surface characterization techniques, mass spectrometry, nuclear magnetic resonance, chemometrics and statistics, and separation sciences (e.g. chromatography) that provide insight into the forensic analysis of materials. Evidential topics of interest to the journal include, but are not limited to, fingerprint analysis, drug analysis, ignitable liquid residue analysis, explosives detection and analysis, the characterization and comparison of trace evidence (glass, fibers, paints and polymers, tapes, soils and other materials), ink and paper analysis, gunshot residue analysis, synthetic pathways for drugs, toxicology and the analysis and chemistry associated with the components of fingermarks. The journal is particularly interested in receiving manuscripts that report advances in the forensic interpretation of chemical evidence. Technology Readiness Level: When submitting an article to Forensic Chemistry, all authors will be asked to self-assign a Technology Readiness Level (TRL) to their article. The purpose of the TRL system is to help readers understand the level of maturity of an idea or method, to help track the evolution of readiness of a given technique or method, and to help filter published articles by the expected ease of implementation in an operation setting within a crime lab.