{"title":"酸性红壤农业区的土壤健康评估及使用生物炭土壤改良剂对其进行修复","authors":"Qiang Li, Wanting Jiang, Junxiao Lyu","doi":"10.1111/sum.13002","DOIUrl":null,"url":null,"abstract":"In light of growing concerns regarding food security and soil health, there is increasing emphasis on the assessment of soil health and efforts to improve or maintain the soil health of cultivated land. This case study Niutian Town in Jiangxi Province in southern China, was selected as a typical red soil and a major grain-producing area. This research involves an integrated evaluation model based on Entropy weight TOPSIS and emergy analysis to assess the soil health of cultivated land. An evaluation system was developed, comprising of 31 indicators selected on the basis of resources and environments, with an emphasis on sensitive and promising microorganisms category indicators. Additionally, experiments were conducted to assess the ecological risk of soil pollution and develop novel soil conditioners. Our results indicate that Pb, Hg and Cd present a moderate ecological risk on 92.1% of the cultivated land. Furthermore, 56.8% of the cultivated land was ‘sub-healthy’ or ‘unhealthy’. Biochar was found to be a soil conditioner with good adsorption effect, with absorption rates reaching up to 99.9% and 88.3% for Pb and Cd, respectively. Additionally, g-C<sub>3</sub>N<sub>4</sub> was added to address pesticide contamination, which showed an adsorption rate of up to 75.2% for atrazine. This work develops a targeted remediation approach based on assessment results to address regional cropland soil health issues.","PeriodicalId":21759,"journal":{"name":"Soil Use and Management","volume":"5 1","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2023-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Soil health assessment of an acidic red soil agricultural area and its restoration with biochar soil conditioners\",\"authors\":\"Qiang Li, Wanting Jiang, Junxiao Lyu\",\"doi\":\"10.1111/sum.13002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In light of growing concerns regarding food security and soil health, there is increasing emphasis on the assessment of soil health and efforts to improve or maintain the soil health of cultivated land. This case study Niutian Town in Jiangxi Province in southern China, was selected as a typical red soil and a major grain-producing area. This research involves an integrated evaluation model based on Entropy weight TOPSIS and emergy analysis to assess the soil health of cultivated land. An evaluation system was developed, comprising of 31 indicators selected on the basis of resources and environments, with an emphasis on sensitive and promising microorganisms category indicators. Additionally, experiments were conducted to assess the ecological risk of soil pollution and develop novel soil conditioners. Our results indicate that Pb, Hg and Cd present a moderate ecological risk on 92.1% of the cultivated land. Furthermore, 56.8% of the cultivated land was ‘sub-healthy’ or ‘unhealthy’. Biochar was found to be a soil conditioner with good adsorption effect, with absorption rates reaching up to 99.9% and 88.3% for Pb and Cd, respectively. Additionally, g-C<sub>3</sub>N<sub>4</sub> was added to address pesticide contamination, which showed an adsorption rate of up to 75.2% for atrazine. This work develops a targeted remediation approach based on assessment results to address regional cropland soil health issues.\",\"PeriodicalId\":21759,\"journal\":{\"name\":\"Soil Use and Management\",\"volume\":\"5 1\",\"pages\":\"\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2023-12-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Soil Use and Management\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1111/sum.13002\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"SOIL SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soil Use and Management","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1111/sum.13002","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SOIL SCIENCE","Score":null,"Total":0}
Soil health assessment of an acidic red soil agricultural area and its restoration with biochar soil conditioners
In light of growing concerns regarding food security and soil health, there is increasing emphasis on the assessment of soil health and efforts to improve or maintain the soil health of cultivated land. This case study Niutian Town in Jiangxi Province in southern China, was selected as a typical red soil and a major grain-producing area. This research involves an integrated evaluation model based on Entropy weight TOPSIS and emergy analysis to assess the soil health of cultivated land. An evaluation system was developed, comprising of 31 indicators selected on the basis of resources and environments, with an emphasis on sensitive and promising microorganisms category indicators. Additionally, experiments were conducted to assess the ecological risk of soil pollution and develop novel soil conditioners. Our results indicate that Pb, Hg and Cd present a moderate ecological risk on 92.1% of the cultivated land. Furthermore, 56.8% of the cultivated land was ‘sub-healthy’ or ‘unhealthy’. Biochar was found to be a soil conditioner with good adsorption effect, with absorption rates reaching up to 99.9% and 88.3% for Pb and Cd, respectively. Additionally, g-C3N4 was added to address pesticide contamination, which showed an adsorption rate of up to 75.2% for atrazine. This work develops a targeted remediation approach based on assessment results to address regional cropland soil health issues.
期刊介绍:
Soil Use and Management publishes in soil science, earth and environmental science, agricultural science, and engineering fields. The submitted papers should consider the underlying mechanisms governing the natural and anthropogenic processes which affect soil systems, and should inform policy makers and/or practitioners on the sustainable use and management of soil resources. Interdisciplinary studies, e.g. linking soil with climate change, biodiversity, global health, and the UN’s sustainable development goals, with strong novelty, wide implications, and unexpected outcomes are welcomed.