{"title":"装饰蜂巢晶格的奇异基态","authors":"O. O. Kryvchikov, D. V. Laptiev","doi":"10.1063/10.0022369","DOIUrl":null,"url":null,"abstract":"The study is focusing on the exploration of the magnetic properties of the frustrated decorated honeycomb lattices. The presence of geometrical frustration and C3 symmetry leads to an exotic ground state. Monte Carlo simulations and analytical calculations are used to analyze the system’s behavior. The dependence of the magnetization on the external field of the Ising model exhibits a step-like behavior, while the magnetization of the classical Heisenberg model has no plateau in the isotropic case. An efficient Hamiltonian is proposed to describe the properties of this system on the unfrustrated hexagonal lattice within the framework of the chiral Potts model. Within a specific range of fields, the state of the effective Hamiltonian aligns with that of the original Hamiltonian. The ground state configurations and degeneracy of the system are explored, revealing fractured stripe patterns separated by spins with opposite orientations. These findings contribute to the knowledge of the properties of decorated lattices, offering valuable insights for potential experimental and practical applications.","PeriodicalId":18077,"journal":{"name":"Low Temperature Physics","volume":"31 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2023-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The exotic ground state of the decorated honeycomb lattice\",\"authors\":\"O. O. Kryvchikov, D. V. Laptiev\",\"doi\":\"10.1063/10.0022369\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The study is focusing on the exploration of the magnetic properties of the frustrated decorated honeycomb lattices. The presence of geometrical frustration and C3 symmetry leads to an exotic ground state. Monte Carlo simulations and analytical calculations are used to analyze the system’s behavior. The dependence of the magnetization on the external field of the Ising model exhibits a step-like behavior, while the magnetization of the classical Heisenberg model has no plateau in the isotropic case. An efficient Hamiltonian is proposed to describe the properties of this system on the unfrustrated hexagonal lattice within the framework of the chiral Potts model. Within a specific range of fields, the state of the effective Hamiltonian aligns with that of the original Hamiltonian. The ground state configurations and degeneracy of the system are explored, revealing fractured stripe patterns separated by spins with opposite orientations. These findings contribute to the knowledge of the properties of decorated lattices, offering valuable insights for potential experimental and practical applications.\",\"PeriodicalId\":18077,\"journal\":{\"name\":\"Low Temperature Physics\",\"volume\":\"31 1\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-12-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Low Temperature Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1063/10.0022369\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PHYSICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Low Temperature Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1063/10.0022369","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
The exotic ground state of the decorated honeycomb lattice
The study is focusing on the exploration of the magnetic properties of the frustrated decorated honeycomb lattices. The presence of geometrical frustration and C3 symmetry leads to an exotic ground state. Monte Carlo simulations and analytical calculations are used to analyze the system’s behavior. The dependence of the magnetization on the external field of the Ising model exhibits a step-like behavior, while the magnetization of the classical Heisenberg model has no plateau in the isotropic case. An efficient Hamiltonian is proposed to describe the properties of this system on the unfrustrated hexagonal lattice within the framework of the chiral Potts model. Within a specific range of fields, the state of the effective Hamiltonian aligns with that of the original Hamiltonian. The ground state configurations and degeneracy of the system are explored, revealing fractured stripe patterns separated by spins with opposite orientations. These findings contribute to the knowledge of the properties of decorated lattices, offering valuable insights for potential experimental and practical applications.
期刊介绍:
Guided by an international editorial board, Low Temperature Physics (LTP) communicates the results of important experimental and theoretical studies conducted at low temperatures. LTP offers key work in such areas as superconductivity, magnetism, lattice dynamics, quantum liquids and crystals, cryocrystals, low-dimensional and disordered systems, electronic properties of normal metals and alloys, and critical phenomena. The journal publishes original articles on new experimental and theoretical results as well as review articles, brief communications, memoirs, and biographies.
Low Temperature Physics, a translation of the copyrighted Journal FIZIKA NIZKIKH TEMPERATUR, is a monthly journal containing English reports of current research in the field of the low temperature physics. The translation began with the 1975 issues. One volume is published annually beginning with the January issues.