避免与前轮自行车相撞的稳健优化制动策略

IF 4.6 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE IEEE Open Journal of Intelligent Transportation Systems Pub Date : 2023-11-22 DOI:10.1109/OJITS.2023.3335397
Xun Shen;Yan Zhang;Xingguo Zhang;Pongsathorn Raksincharoensak;Kazumune Hashimoto
{"title":"避免与前轮自行车相撞的稳健优化制动策略","authors":"Xun Shen;Yan Zhang;Xingguo Zhang;Pongsathorn Raksincharoensak;Kazumune Hashimoto","doi":"10.1109/OJITS.2023.3335397","DOIUrl":null,"url":null,"abstract":"Bicycles are frequently involved in traffic collisions with vehicles, particularly when sudden changes in direction occur. This paper presents a robust risk-predictive braking policy to ensure collision avoidance in all possible crossing behaviors of a bicycle. The policy controls the vehicle to follow an upper limit of the safe speed before the bicycle changes direction, ensuring that the vehicle can stop in time by the advanced emergency braking system before a collision occurs in any situation. The upper limit of the safe speed is the solution of an intractable robust optimization problem. Therefore, a scenario approach is adapted to develop a tractable approximate problem for the original robust optimization problem. The feasibility and optimality of the problem reduction are theoretically proved. A bisection method-based fast algorithm is designed to solve the approximate problem of the original robust optimization problem, making it applicable in practical scenarios. The convergence of the algorithm is also proven. The effectiveness of the proposed method is validated through hardware-in-the-loop simulations using CarMaker.","PeriodicalId":100631,"journal":{"name":"IEEE Open Journal of Intelligent Transportation Systems","volume":"4 ","pages":"943-954"},"PeriodicalIF":4.6000,"publicationDate":"2023-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10325675","citationCount":"0","resultStr":"{\"title\":\"Robust Optimal Braking Policy for Avoiding Collision With Front Bicycle\",\"authors\":\"Xun Shen;Yan Zhang;Xingguo Zhang;Pongsathorn Raksincharoensak;Kazumune Hashimoto\",\"doi\":\"10.1109/OJITS.2023.3335397\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Bicycles are frequently involved in traffic collisions with vehicles, particularly when sudden changes in direction occur. This paper presents a robust risk-predictive braking policy to ensure collision avoidance in all possible crossing behaviors of a bicycle. The policy controls the vehicle to follow an upper limit of the safe speed before the bicycle changes direction, ensuring that the vehicle can stop in time by the advanced emergency braking system before a collision occurs in any situation. The upper limit of the safe speed is the solution of an intractable robust optimization problem. Therefore, a scenario approach is adapted to develop a tractable approximate problem for the original robust optimization problem. The feasibility and optimality of the problem reduction are theoretically proved. A bisection method-based fast algorithm is designed to solve the approximate problem of the original robust optimization problem, making it applicable in practical scenarios. The convergence of the algorithm is also proven. The effectiveness of the proposed method is validated through hardware-in-the-loop simulations using CarMaker.\",\"PeriodicalId\":100631,\"journal\":{\"name\":\"IEEE Open Journal of Intelligent Transportation Systems\",\"volume\":\"4 \",\"pages\":\"943-954\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2023-11-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10325675\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Open Journal of Intelligent Transportation Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10325675/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of Intelligent Transportation Systems","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10325675/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

自行车经常与车辆发生碰撞,特别是在突然改变方向的情况下。提出了一种鲁棒风险预测制动策略,以保证自行车在所有可能的过马路行为中都能避免碰撞。该策略控制车辆在自行车改变方向前遵循安全速度上限,确保车辆在任何情况下都能通过先进的紧急制动系统在碰撞发生前及时停车。安全速度的上限是一个棘手的鲁棒优化问题的解。因此,采用情景化方法对原鲁棒优化问题进行求解。从理论上证明了该方法的可行性和最优性。设计了一种基于二分法的快速算法来解决原鲁棒优化问题的近似问题,使其具有实际应用价值。并证明了算法的收敛性。通过汽车制造商的硬件在环仿真验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Robust Optimal Braking Policy for Avoiding Collision With Front Bicycle
Bicycles are frequently involved in traffic collisions with vehicles, particularly when sudden changes in direction occur. This paper presents a robust risk-predictive braking policy to ensure collision avoidance in all possible crossing behaviors of a bicycle. The policy controls the vehicle to follow an upper limit of the safe speed before the bicycle changes direction, ensuring that the vehicle can stop in time by the advanced emergency braking system before a collision occurs in any situation. The upper limit of the safe speed is the solution of an intractable robust optimization problem. Therefore, a scenario approach is adapted to develop a tractable approximate problem for the original robust optimization problem. The feasibility and optimality of the problem reduction are theoretically proved. A bisection method-based fast algorithm is designed to solve the approximate problem of the original robust optimization problem, making it applicable in practical scenarios. The convergence of the algorithm is also proven. The effectiveness of the proposed method is validated through hardware-in-the-loop simulations using CarMaker.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.40
自引率
0.00%
发文量
0
期刊最新文献
Designing Directional Traffic Flow With Edge Mode Combination in 2-D Topological Structures 2024 Index IEEE Open Journal of Intelligent Transportation Systems Vol. 5 Safety-Critical Oracles for Metamorphic Testing of Deep Learning LiDAR Point Cloud Object Detectors Front Cover IEEE Open Journal of Intelligent Transportation Systems Instructions for Authors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1