{"title":"独立内存设备冗余阵列","authors":"Peiyun Wu;Trung Le;Zhichun Zhu;Zhao Zhang","doi":"10.1109/LCA.2023.3334989","DOIUrl":null,"url":null,"abstract":"DRAM memory reliability is increasingly a concern as recent studies found. In this letter, we propose RAIMD (Redundant Array of Independent Memory Devices), an energy-efficient memory organization with RAID-like error protection. In this organization, each memory device works as an independent memory module to serve a whole memory request and to support error detection and error recovery. It relies on the high data rate of modern memory device to minimize the performance impact of increased data transfer time. RAIMD provides chip-level error protection similar to Chipkill but with significant energy savings. Our simulation results indicate that RAIMD can save memory energy by 26.3% on average with a small performance overhead of 5.3% on DDR5-4800 memory systems for SPEC2017 multi-core workloads.","PeriodicalId":51248,"journal":{"name":"IEEE Computer Architecture Letters","volume":"22 2","pages":"181-184"},"PeriodicalIF":1.4000,"publicationDate":"2023-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Redundant Array of Independent Memory Devices\",\"authors\":\"Peiyun Wu;Trung Le;Zhichun Zhu;Zhao Zhang\",\"doi\":\"10.1109/LCA.2023.3334989\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"DRAM memory reliability is increasingly a concern as recent studies found. In this letter, we propose RAIMD (Redundant Array of Independent Memory Devices), an energy-efficient memory organization with RAID-like error protection. In this organization, each memory device works as an independent memory module to serve a whole memory request and to support error detection and error recovery. It relies on the high data rate of modern memory device to minimize the performance impact of increased data transfer time. RAIMD provides chip-level error protection similar to Chipkill but with significant energy savings. Our simulation results indicate that RAIMD can save memory energy by 26.3% on average with a small performance overhead of 5.3% on DDR5-4800 memory systems for SPEC2017 multi-core workloads.\",\"PeriodicalId\":51248,\"journal\":{\"name\":\"IEEE Computer Architecture Letters\",\"volume\":\"22 2\",\"pages\":\"181-184\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2023-11-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Computer Architecture Letters\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10323513/\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Computer Architecture Letters","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10323513/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
DRAM memory reliability is increasingly a concern as recent studies found. In this letter, we propose RAIMD (Redundant Array of Independent Memory Devices), an energy-efficient memory organization with RAID-like error protection. In this organization, each memory device works as an independent memory module to serve a whole memory request and to support error detection and error recovery. It relies on the high data rate of modern memory device to minimize the performance impact of increased data transfer time. RAIMD provides chip-level error protection similar to Chipkill but with significant energy savings. Our simulation results indicate that RAIMD can save memory energy by 26.3% on average with a small performance overhead of 5.3% on DDR5-4800 memory systems for SPEC2017 multi-core workloads.
期刊介绍:
IEEE Computer Architecture Letters is a rigorously peer-reviewed forum for publishing early, high-impact results in the areas of uni- and multiprocessor computer systems, computer architecture, microarchitecture, workload characterization, performance evaluation and simulation techniques, and power-aware computing. Submissions are welcomed on any topic in computer architecture, especially but not limited to: microprocessor and multiprocessor systems, microarchitecture and ILP processors, workload characterization, performance evaluation and simulation techniques, compiler-hardware and operating system-hardware interactions, interconnect architectures, memory and cache systems, power and thermal issues at the architecture level, I/O architectures and techniques, independent validation of previously published results, analysis of unsuccessful techniques, domain-specific processor architectures (e.g., embedded, graphics, network, etc.), real-time and high-availability architectures, reconfigurable systems.