求助PDF
{"title":"降水与林冠之间硝酸盐交换的同位素制约因素","authors":"Xue-Yan Liu, Mei-Na Liu, Wan-Xiao Qin, Wei Song","doi":"10.1029/2023GB007920","DOIUrl":null,"url":null,"abstract":"<p>Atmospheric nitrogen (N) deposition is a key process influencing plant-soil N processes and associated functions of forest ecosystems. However, the N deposition into soils based on open-field precipitation observations remains inaccurate due to the unconstrained precipitation-canopy N exchanges, which prevents a better evaluation of N deposition effects on forest N cycles and functions. Nitrate (<math>\n <semantics>\n <mrow>\n <msup>\n <msub>\n <mtext>NO</mtext>\n <mn>3</mn>\n </msub>\n <mo>−</mo>\n </msup>\n </mrow>\n <annotation> ${{\\text{NO}}_{3}}^{-}$</annotation>\n </semantics></math>) is a major form of reactive N. Based on a data synthesis of fluxes and isotopes (<sup>15</sup>N, <sup>17</sup>O, <sup>18</sup>O) of atmospheric <math>\n <semantics>\n <mrow>\n <msup>\n <msub>\n <mtext>NO</mtext>\n <mn>3</mn>\n </msub>\n <mo>−</mo>\n </msup>\n </mrow>\n <annotation> ${{\\text{NO}}_{3}}^{-}$</annotation>\n </semantics></math> inputs in forests, here we constructed a new method to quantify fractions and fluxes of throughfall <math>\n <semantics>\n <mrow>\n <msup>\n <msub>\n <mtext>NO</mtext>\n <mn>3</mn>\n </msub>\n <mo>−</mo>\n </msup>\n </mrow>\n <annotation> ${{\\text{NO}}_{3}}^{-}$</annotation>\n </semantics></math> (<math>\n <semantics>\n <mrow>\n <mrow>\n <mi>t</mi>\n <mo>-</mo>\n </mrow>\n <msup>\n <msub>\n <mtext>NO</mtext>\n <mn>3</mn>\n </msub>\n <mo>−</mo>\n </msup>\n </mrow>\n <annotation> $\\mathrm{t}\\mbox{-}{{\\text{NO}}_{3}}^{-}$</annotation>\n </semantics></math>) contributors (nitrification (<math>\n <semantics>\n <mrow>\n <mrow>\n <mi>n</mi>\n <mo>-</mo>\n </mrow>\n <msup>\n <msub>\n <mtext>NO</mtext>\n <mn>3</mn>\n </msub>\n <mo>−</mo>\n </msup>\n </mrow>\n <annotation> $\\mathrm{n}\\mbox{-}{{\\text{NO}}_{3}}^{-}$</annotation>\n </semantics></math>) and particulates (<math>\n <semantics>\n <mrow>\n <mrow>\n <mi>p</mi>\n <mo>-</mo>\n </mrow>\n <msup>\n <msub>\n <mtext>NO</mtext>\n <mn>3</mn>\n </msub>\n <mo>−</mo>\n </msup>\n </mrow>\n <annotation> $\\mathrm{p}\\mbox{-}{{\\text{NO}}_{3}}^{-}$</annotation>\n </semantics></math>) in canopies, the original precipitation (<math>\n <semantics>\n <mrow>\n <mrow>\n <mi>b</mi>\n <mo>-</mo>\n </mrow>\n <msup>\n <msub>\n <mtext>NO</mtext>\n <mn>3</mn>\n </msub>\n <mo>−</mo>\n </msup>\n </mrow>\n <annotation> $\\mathrm{b}\\mbox{-}{{\\text{NO}}_{3}}^{-}$</annotation>\n </semantics></math>)) and then constrain precipitation-canopy <math>\n <semantics>\n <mrow>\n <msup>\n <msub>\n <mtext>NO</mtext>\n <mn>3</mn>\n </msub>\n <mo>−</mo>\n </msup>\n </mrow>\n <annotation> ${{\\text{NO}}_{3}}^{-}$</annotation>\n </semantics></math> exchanges (i.e., <math>\n <semantics>\n <mrow>\n <mrow>\n <mi>t</mi>\n <mo>-</mo>\n </mrow>\n <msup>\n <msub>\n <mtext>NO</mtext>\n <mn>3</mn>\n </msub>\n <mo>−</mo>\n </msup>\n </mrow>\n <annotation> $\\mathrm{t}\\mbox{-}{{\\text{NO}}_{3}}^{-}$</annotation>\n </semantics></math> gains from canopy and <math>\n <semantics>\n <mrow>\n <mrow>\n <mi>b</mi>\n <mo>-</mo>\n </mrow>\n <msup>\n <msub>\n <mtext>NO</mtext>\n <mn>3</mn>\n </msub>\n <mo>−</mo>\n </msup>\n </mrow>\n <annotation> $\\mathrm{b}\\mbox{-}{{\\text{NO}}_{3}}^{-}$</annotation>\n </semantics></math> losses due to canopy retention). Generally, <math>\n <semantics>\n <mrow>\n <mrow>\n <mi>t</mi>\n <mo>-</mo>\n </mrow>\n <msup>\n <msub>\n <mtext>NO</mtext>\n <mn>3</mn>\n </msub>\n <mo>−</mo>\n </msup>\n </mrow>\n <annotation> $\\mathrm{t}\\mbox{-}{{\\text{NO}}_{3}}^{-}$</annotation>\n </semantics></math> was higher in fluxes but lower in N and O isotopes than <math>\n <semantics>\n <mrow>\n <mrow>\n <mi>b</mi>\n <mo>-</mo>\n </mrow>\n <msup>\n <msub>\n <mtext>NO</mtext>\n <mn>3</mn>\n </msub>\n <mo>−</mo>\n </msup>\n </mrow>\n <annotation> $\\mathrm{b}\\mbox{-}{{\\text{NO}}_{3}}^{-}$</annotation>\n </semantics></math>, suggesting higher gains than losses and canopy nitrification as a gain contributor. 10%−18% and 40%−47% of <math>\n <semantics>\n <mrow>\n <mrow>\n <mi>t</mi>\n <mo>-</mo>\n </mrow>\n <msup>\n <msub>\n <mtext>NO</mtext>\n <mn>3</mn>\n </msub>\n <mo>−</mo>\n </msup>\n </mrow>\n <annotation> $\\mathrm{t}\\mbox{-}{{\\text{NO}}_{3}}^{-}$</annotation>\n </semantics></math> were gained from canopy <math>\n <semantics>\n <mrow>\n <mrow>\n <mi>n</mi>\n <mo>-</mo>\n </mrow>\n <msup>\n <msub>\n <mtext>NO</mtext>\n <mn>3</mn>\n </msub>\n <mo>−</mo>\n </msup>\n </mrow>\n <annotation> $\\mathrm{n}\\mbox{-}{{\\text{NO}}_{3}}^{-}$</annotation>\n </semantics></math> and <math>\n <semantics>\n <mrow>\n <mrow>\n <mi>p</mi>\n <mo>-</mo>\n </mrow>\n <msup>\n <msub>\n <mtext>NO</mtext>\n <mn>3</mn>\n </msub>\n <mo>−</mo>\n </msup>\n </mrow>\n <annotation> $\\mathrm{p}\\mbox{-}{{\\text{NO}}_{3}}^{-}$</annotation>\n </semantics></math>, respectively, while 43% ± 25% and 20% ± 74% of the original <math>\n <semantics>\n <mrow>\n <mrow>\n <mi>b</mi>\n <mo>-</mo>\n </mrow>\n <msup>\n <msub>\n <mtext>NO</mtext>\n <mn>3</mn>\n </msub>\n <mo>−</mo>\n </msup>\n </mrow>\n <annotation> $\\mathrm{b}\\mbox{-}{{\\text{NO}}_{3}}^{-}$</annotation>\n </semantics></math> were lost after passing through canopies of broadleaved and coniferous forests, respectively. Importantly, both <math>\n <semantics>\n <mrow>\n <mrow>\n <mi>t</mi>\n <mo>-</mo>\n </mrow>\n <msup>\n <msub>\n <mtext>NO</mtext>\n <mn>3</mn>\n </msub>\n <mo>−</mo>\n </msup>\n </mrow>\n <annotation> $\\mathrm{t}\\mbox{-}{{\\text{NO}}_{3}}^{-}$</annotation>\n </semantics></math> gain and <math>\n <semantics>\n <mrow>\n <mrow>\n <mi>b</mi>\n <mo>-</mo>\n </mrow>\n <msup>\n <msub>\n <mtext>NO</mtext>\n <mn>3</mn>\n </msub>\n <mo>−</mo>\n </msup>\n </mrow>\n <annotation> $\\mathrm{b}\\mbox{-}{{\\text{NO}}_{3}}^{-}$</annotation>\n </semantics></math> loss fluxes were found increasing with the <math>\n <semantics>\n <mrow>\n <mrow>\n <mi>b</mi>\n <mo>-</mo>\n </mrow>\n <msup>\n <msub>\n <mtext>NO</mtext>\n <mn>3</mn>\n </msub>\n <mo>−</mo>\n </msup>\n </mrow>\n <annotation> $\\mathrm{b}\\mbox{-}{{\\text{NO}}_{3}}^{-}$</annotation>\n </semantics></math> fluxes. This work unlocked fractions and fluxes of major precipitation-canopy <math>\n <semantics>\n <mrow>\n <msup>\n <msub>\n <mtext>NO</mtext>\n <mn>3</mn>\n </msub>\n <mo>−</mo>\n </msup>\n </mrow>\n <annotation> ${{\\text{NO}}_{3}}^{-}$</annotation>\n </semantics></math> exchange processes and revealed a stimulating mechanism of atmospheric <math>\n <semantics>\n <mrow>\n <msup>\n <msub>\n <mtext>NO</mtext>\n <mn>3</mn>\n </msub>\n <mo>−</mo>\n </msup>\n </mrow>\n <annotation> ${{\\text{NO}}_{3}}^{-}$</annotation>\n </semantics></math> pollution on precipitation-canopy <math>\n <semantics>\n <mrow>\n <msup>\n <msub>\n <mtext>NO</mtext>\n <mn>3</mn>\n </msub>\n <mo>−</mo>\n </msup>\n </mrow>\n <annotation> ${{\\text{NO}}_{3}}^{-}$</annotation>\n </semantics></math> exchanges.</p>","PeriodicalId":12729,"journal":{"name":"Global Biogeochemical Cycles","volume":"37 12","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2023-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Isotope Constraints on Nitrate Exchanges Between Precipitation and Forest Canopy\",\"authors\":\"Xue-Yan Liu, Mei-Na Liu, Wan-Xiao Qin, Wei Song\",\"doi\":\"10.1029/2023GB007920\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Atmospheric nitrogen (N) deposition is a key process influencing plant-soil N processes and associated functions of forest ecosystems. However, the N deposition into soils based on open-field precipitation observations remains inaccurate due to the unconstrained precipitation-canopy N exchanges, which prevents a better evaluation of N deposition effects on forest N cycles and functions. Nitrate (<math>\\n <semantics>\\n <mrow>\\n <msup>\\n <msub>\\n <mtext>NO</mtext>\\n <mn>3</mn>\\n </msub>\\n <mo>−</mo>\\n </msup>\\n </mrow>\\n <annotation> ${{\\\\text{NO}}_{3}}^{-}$</annotation>\\n </semantics></math>) is a major form of reactive N. Based on a data synthesis of fluxes and isotopes (<sup>15</sup>N, <sup>17</sup>O, <sup>18</sup>O) of atmospheric <math>\\n <semantics>\\n <mrow>\\n <msup>\\n <msub>\\n <mtext>NO</mtext>\\n <mn>3</mn>\\n </msub>\\n <mo>−</mo>\\n </msup>\\n </mrow>\\n <annotation> ${{\\\\text{NO}}_{3}}^{-}$</annotation>\\n </semantics></math> inputs in forests, here we constructed a new method to quantify fractions and fluxes of throughfall <math>\\n <semantics>\\n <mrow>\\n <msup>\\n <msub>\\n <mtext>NO</mtext>\\n <mn>3</mn>\\n </msub>\\n <mo>−</mo>\\n </msup>\\n </mrow>\\n <annotation> ${{\\\\text{NO}}_{3}}^{-}$</annotation>\\n </semantics></math> (<math>\\n <semantics>\\n <mrow>\\n <mrow>\\n <mi>t</mi>\\n <mo>-</mo>\\n </mrow>\\n <msup>\\n <msub>\\n <mtext>NO</mtext>\\n <mn>3</mn>\\n </msub>\\n <mo>−</mo>\\n </msup>\\n </mrow>\\n <annotation> $\\\\mathrm{t}\\\\mbox{-}{{\\\\text{NO}}_{3}}^{-}$</annotation>\\n </semantics></math>) contributors (nitrification (<math>\\n <semantics>\\n <mrow>\\n <mrow>\\n <mi>n</mi>\\n <mo>-</mo>\\n </mrow>\\n <msup>\\n <msub>\\n <mtext>NO</mtext>\\n <mn>3</mn>\\n </msub>\\n <mo>−</mo>\\n </msup>\\n </mrow>\\n <annotation> $\\\\mathrm{n}\\\\mbox{-}{{\\\\text{NO}}_{3}}^{-}$</annotation>\\n </semantics></math>) and particulates (<math>\\n <semantics>\\n <mrow>\\n <mrow>\\n <mi>p</mi>\\n <mo>-</mo>\\n </mrow>\\n <msup>\\n <msub>\\n <mtext>NO</mtext>\\n <mn>3</mn>\\n </msub>\\n <mo>−</mo>\\n </msup>\\n </mrow>\\n <annotation> $\\\\mathrm{p}\\\\mbox{-}{{\\\\text{NO}}_{3}}^{-}$</annotation>\\n </semantics></math>) in canopies, the original precipitation (<math>\\n <semantics>\\n <mrow>\\n <mrow>\\n <mi>b</mi>\\n <mo>-</mo>\\n </mrow>\\n <msup>\\n <msub>\\n <mtext>NO</mtext>\\n <mn>3</mn>\\n </msub>\\n <mo>−</mo>\\n </msup>\\n </mrow>\\n <annotation> $\\\\mathrm{b}\\\\mbox{-}{{\\\\text{NO}}_{3}}^{-}$</annotation>\\n </semantics></math>)) and then constrain precipitation-canopy <math>\\n <semantics>\\n <mrow>\\n <msup>\\n <msub>\\n <mtext>NO</mtext>\\n <mn>3</mn>\\n </msub>\\n <mo>−</mo>\\n </msup>\\n </mrow>\\n <annotation> ${{\\\\text{NO}}_{3}}^{-}$</annotation>\\n </semantics></math> exchanges (i.e., <math>\\n <semantics>\\n <mrow>\\n <mrow>\\n <mi>t</mi>\\n <mo>-</mo>\\n </mrow>\\n <msup>\\n <msub>\\n <mtext>NO</mtext>\\n <mn>3</mn>\\n </msub>\\n <mo>−</mo>\\n </msup>\\n </mrow>\\n <annotation> $\\\\mathrm{t}\\\\mbox{-}{{\\\\text{NO}}_{3}}^{-}$</annotation>\\n </semantics></math> gains from canopy and <math>\\n <semantics>\\n <mrow>\\n <mrow>\\n <mi>b</mi>\\n <mo>-</mo>\\n </mrow>\\n <msup>\\n <msub>\\n <mtext>NO</mtext>\\n <mn>3</mn>\\n </msub>\\n <mo>−</mo>\\n </msup>\\n </mrow>\\n <annotation> $\\\\mathrm{b}\\\\mbox{-}{{\\\\text{NO}}_{3}}^{-}$</annotation>\\n </semantics></math> losses due to canopy retention). Generally, <math>\\n <semantics>\\n <mrow>\\n <mrow>\\n <mi>t</mi>\\n <mo>-</mo>\\n </mrow>\\n <msup>\\n <msub>\\n <mtext>NO</mtext>\\n <mn>3</mn>\\n </msub>\\n <mo>−</mo>\\n </msup>\\n </mrow>\\n <annotation> $\\\\mathrm{t}\\\\mbox{-}{{\\\\text{NO}}_{3}}^{-}$</annotation>\\n </semantics></math> was higher in fluxes but lower in N and O isotopes than <math>\\n <semantics>\\n <mrow>\\n <mrow>\\n <mi>b</mi>\\n <mo>-</mo>\\n </mrow>\\n <msup>\\n <msub>\\n <mtext>NO</mtext>\\n <mn>3</mn>\\n </msub>\\n <mo>−</mo>\\n </msup>\\n </mrow>\\n <annotation> $\\\\mathrm{b}\\\\mbox{-}{{\\\\text{NO}}_{3}}^{-}$</annotation>\\n </semantics></math>, suggesting higher gains than losses and canopy nitrification as a gain contributor. 10%−18% and 40%−47% of <math>\\n <semantics>\\n <mrow>\\n <mrow>\\n <mi>t</mi>\\n <mo>-</mo>\\n </mrow>\\n <msup>\\n <msub>\\n <mtext>NO</mtext>\\n <mn>3</mn>\\n </msub>\\n <mo>−</mo>\\n </msup>\\n </mrow>\\n <annotation> $\\\\mathrm{t}\\\\mbox{-}{{\\\\text{NO}}_{3}}^{-}$</annotation>\\n </semantics></math> were gained from canopy <math>\\n <semantics>\\n <mrow>\\n <mrow>\\n <mi>n</mi>\\n <mo>-</mo>\\n </mrow>\\n <msup>\\n <msub>\\n <mtext>NO</mtext>\\n <mn>3</mn>\\n </msub>\\n <mo>−</mo>\\n </msup>\\n </mrow>\\n <annotation> $\\\\mathrm{n}\\\\mbox{-}{{\\\\text{NO}}_{3}}^{-}$</annotation>\\n </semantics></math> and <math>\\n <semantics>\\n <mrow>\\n <mrow>\\n <mi>p</mi>\\n <mo>-</mo>\\n </mrow>\\n <msup>\\n <msub>\\n <mtext>NO</mtext>\\n <mn>3</mn>\\n </msub>\\n <mo>−</mo>\\n </msup>\\n </mrow>\\n <annotation> $\\\\mathrm{p}\\\\mbox{-}{{\\\\text{NO}}_{3}}^{-}$</annotation>\\n </semantics></math>, respectively, while 43% ± 25% and 20% ± 74% of the original <math>\\n <semantics>\\n <mrow>\\n <mrow>\\n <mi>b</mi>\\n <mo>-</mo>\\n </mrow>\\n <msup>\\n <msub>\\n <mtext>NO</mtext>\\n <mn>3</mn>\\n </msub>\\n <mo>−</mo>\\n </msup>\\n </mrow>\\n <annotation> $\\\\mathrm{b}\\\\mbox{-}{{\\\\text{NO}}_{3}}^{-}$</annotation>\\n </semantics></math> were lost after passing through canopies of broadleaved and coniferous forests, respectively. Importantly, both <math>\\n <semantics>\\n <mrow>\\n <mrow>\\n <mi>t</mi>\\n <mo>-</mo>\\n </mrow>\\n <msup>\\n <msub>\\n <mtext>NO</mtext>\\n <mn>3</mn>\\n </msub>\\n <mo>−</mo>\\n </msup>\\n </mrow>\\n <annotation> $\\\\mathrm{t}\\\\mbox{-}{{\\\\text{NO}}_{3}}^{-}$</annotation>\\n </semantics></math> gain and <math>\\n <semantics>\\n <mrow>\\n <mrow>\\n <mi>b</mi>\\n <mo>-</mo>\\n </mrow>\\n <msup>\\n <msub>\\n <mtext>NO</mtext>\\n <mn>3</mn>\\n </msub>\\n <mo>−</mo>\\n </msup>\\n </mrow>\\n <annotation> $\\\\mathrm{b}\\\\mbox{-}{{\\\\text{NO}}_{3}}^{-}$</annotation>\\n </semantics></math> loss fluxes were found increasing with the <math>\\n <semantics>\\n <mrow>\\n <mrow>\\n <mi>b</mi>\\n <mo>-</mo>\\n </mrow>\\n <msup>\\n <msub>\\n <mtext>NO</mtext>\\n <mn>3</mn>\\n </msub>\\n <mo>−</mo>\\n </msup>\\n </mrow>\\n <annotation> $\\\\mathrm{b}\\\\mbox{-}{{\\\\text{NO}}_{3}}^{-}$</annotation>\\n </semantics></math> fluxes. This work unlocked fractions and fluxes of major precipitation-canopy <math>\\n <semantics>\\n <mrow>\\n <msup>\\n <msub>\\n <mtext>NO</mtext>\\n <mn>3</mn>\\n </msub>\\n <mo>−</mo>\\n </msup>\\n </mrow>\\n <annotation> ${{\\\\text{NO}}_{3}}^{-}$</annotation>\\n </semantics></math> exchange processes and revealed a stimulating mechanism of atmospheric <math>\\n <semantics>\\n <mrow>\\n <msup>\\n <msub>\\n <mtext>NO</mtext>\\n <mn>3</mn>\\n </msub>\\n <mo>−</mo>\\n </msup>\\n </mrow>\\n <annotation> ${{\\\\text{NO}}_{3}}^{-}$</annotation>\\n </semantics></math> pollution on precipitation-canopy <math>\\n <semantics>\\n <mrow>\\n <msup>\\n <msub>\\n <mtext>NO</mtext>\\n <mn>3</mn>\\n </msub>\\n <mo>−</mo>\\n </msup>\\n </mrow>\\n <annotation> ${{\\\\text{NO}}_{3}}^{-}$</annotation>\\n </semantics></math> exchanges.</p>\",\"PeriodicalId\":12729,\"journal\":{\"name\":\"Global Biogeochemical Cycles\",\"volume\":\"37 12\",\"pages\":\"\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2023-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Global Biogeochemical Cycles\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1029/2023GB007920\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Global Biogeochemical Cycles","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2023GB007920","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
引用
批量引用