降水与林冠之间硝酸盐交换的同位素制约因素

IF 5.4 2区 地球科学 Q1 ENVIRONMENTAL SCIENCES Global Biogeochemical Cycles Pub Date : 2023-12-15 DOI:10.1029/2023GB007920
Xue-Yan Liu, Mei-Na Liu, Wan-Xiao Qin, Wei Song
{"title":"降水与林冠之间硝酸盐交换的同位素制约因素","authors":"Xue-Yan Liu,&nbsp;Mei-Na Liu,&nbsp;Wan-Xiao Qin,&nbsp;Wei Song","doi":"10.1029/2023GB007920","DOIUrl":null,"url":null,"abstract":"<p>Atmospheric nitrogen (N) deposition is a key process influencing plant-soil N processes and associated functions of forest ecosystems. However, the N deposition into soils based on open-field precipitation observations remains inaccurate due to the unconstrained precipitation-canopy N exchanges, which prevents a better evaluation of N deposition effects on forest N cycles and functions. Nitrate (<math>\n <semantics>\n <mrow>\n <msup>\n <msub>\n <mtext>NO</mtext>\n <mn>3</mn>\n </msub>\n <mo>−</mo>\n </msup>\n </mrow>\n <annotation> ${{\\text{NO}}_{3}}^{-}$</annotation>\n </semantics></math>) is a major form of reactive N. Based on a data synthesis of fluxes and isotopes (<sup>15</sup>N, <sup>17</sup>O, <sup>18</sup>O) of atmospheric <math>\n <semantics>\n <mrow>\n <msup>\n <msub>\n <mtext>NO</mtext>\n <mn>3</mn>\n </msub>\n <mo>−</mo>\n </msup>\n </mrow>\n <annotation> ${{\\text{NO}}_{3}}^{-}$</annotation>\n </semantics></math> inputs in forests, here we constructed a new method to quantify fractions and fluxes of throughfall <math>\n <semantics>\n <mrow>\n <msup>\n <msub>\n <mtext>NO</mtext>\n <mn>3</mn>\n </msub>\n <mo>−</mo>\n </msup>\n </mrow>\n <annotation> ${{\\text{NO}}_{3}}^{-}$</annotation>\n </semantics></math> (<math>\n <semantics>\n <mrow>\n <mrow>\n <mi>t</mi>\n <mo>-</mo>\n </mrow>\n <msup>\n <msub>\n <mtext>NO</mtext>\n <mn>3</mn>\n </msub>\n <mo>−</mo>\n </msup>\n </mrow>\n <annotation> $\\mathrm{t}\\mbox{-}{{\\text{NO}}_{3}}^{-}$</annotation>\n </semantics></math>) contributors (nitrification (<math>\n <semantics>\n <mrow>\n <mrow>\n <mi>n</mi>\n <mo>-</mo>\n </mrow>\n <msup>\n <msub>\n <mtext>NO</mtext>\n <mn>3</mn>\n </msub>\n <mo>−</mo>\n </msup>\n </mrow>\n <annotation> $\\mathrm{n}\\mbox{-}{{\\text{NO}}_{3}}^{-}$</annotation>\n </semantics></math>) and particulates (<math>\n <semantics>\n <mrow>\n <mrow>\n <mi>p</mi>\n <mo>-</mo>\n </mrow>\n <msup>\n <msub>\n <mtext>NO</mtext>\n <mn>3</mn>\n </msub>\n <mo>−</mo>\n </msup>\n </mrow>\n <annotation> $\\mathrm{p}\\mbox{-}{{\\text{NO}}_{3}}^{-}$</annotation>\n </semantics></math>) in canopies, the original precipitation (<math>\n <semantics>\n <mrow>\n <mrow>\n <mi>b</mi>\n <mo>-</mo>\n </mrow>\n <msup>\n <msub>\n <mtext>NO</mtext>\n <mn>3</mn>\n </msub>\n <mo>−</mo>\n </msup>\n </mrow>\n <annotation> $\\mathrm{b}\\mbox{-}{{\\text{NO}}_{3}}^{-}$</annotation>\n </semantics></math>)) and then constrain precipitation-canopy <math>\n <semantics>\n <mrow>\n <msup>\n <msub>\n <mtext>NO</mtext>\n <mn>3</mn>\n </msub>\n <mo>−</mo>\n </msup>\n </mrow>\n <annotation> ${{\\text{NO}}_{3}}^{-}$</annotation>\n </semantics></math> exchanges (i.e., <math>\n <semantics>\n <mrow>\n <mrow>\n <mi>t</mi>\n <mo>-</mo>\n </mrow>\n <msup>\n <msub>\n <mtext>NO</mtext>\n <mn>3</mn>\n </msub>\n <mo>−</mo>\n </msup>\n </mrow>\n <annotation> $\\mathrm{t}\\mbox{-}{{\\text{NO}}_{3}}^{-}$</annotation>\n </semantics></math> gains from canopy and <math>\n <semantics>\n <mrow>\n <mrow>\n <mi>b</mi>\n <mo>-</mo>\n </mrow>\n <msup>\n <msub>\n <mtext>NO</mtext>\n <mn>3</mn>\n </msub>\n <mo>−</mo>\n </msup>\n </mrow>\n <annotation> $\\mathrm{b}\\mbox{-}{{\\text{NO}}_{3}}^{-}$</annotation>\n </semantics></math> losses due to canopy retention). Generally, <math>\n <semantics>\n <mrow>\n <mrow>\n <mi>t</mi>\n <mo>-</mo>\n </mrow>\n <msup>\n <msub>\n <mtext>NO</mtext>\n <mn>3</mn>\n </msub>\n <mo>−</mo>\n </msup>\n </mrow>\n <annotation> $\\mathrm{t}\\mbox{-}{{\\text{NO}}_{3}}^{-}$</annotation>\n </semantics></math> was higher in fluxes but lower in N and O isotopes than <math>\n <semantics>\n <mrow>\n <mrow>\n <mi>b</mi>\n <mo>-</mo>\n </mrow>\n <msup>\n <msub>\n <mtext>NO</mtext>\n <mn>3</mn>\n </msub>\n <mo>−</mo>\n </msup>\n </mrow>\n <annotation> $\\mathrm{b}\\mbox{-}{{\\text{NO}}_{3}}^{-}$</annotation>\n </semantics></math>, suggesting higher gains than losses and canopy nitrification as a gain contributor. 10%−18% and 40%−47% of <math>\n <semantics>\n <mrow>\n <mrow>\n <mi>t</mi>\n <mo>-</mo>\n </mrow>\n <msup>\n <msub>\n <mtext>NO</mtext>\n <mn>3</mn>\n </msub>\n <mo>−</mo>\n </msup>\n </mrow>\n <annotation> $\\mathrm{t}\\mbox{-}{{\\text{NO}}_{3}}^{-}$</annotation>\n </semantics></math> were gained from canopy <math>\n <semantics>\n <mrow>\n <mrow>\n <mi>n</mi>\n <mo>-</mo>\n </mrow>\n <msup>\n <msub>\n <mtext>NO</mtext>\n <mn>3</mn>\n </msub>\n <mo>−</mo>\n </msup>\n </mrow>\n <annotation> $\\mathrm{n}\\mbox{-}{{\\text{NO}}_{3}}^{-}$</annotation>\n </semantics></math> and <math>\n <semantics>\n <mrow>\n <mrow>\n <mi>p</mi>\n <mo>-</mo>\n </mrow>\n <msup>\n <msub>\n <mtext>NO</mtext>\n <mn>3</mn>\n </msub>\n <mo>−</mo>\n </msup>\n </mrow>\n <annotation> $\\mathrm{p}\\mbox{-}{{\\text{NO}}_{3}}^{-}$</annotation>\n </semantics></math>, respectively, while 43% ± 25% and 20% ± 74% of the original <math>\n <semantics>\n <mrow>\n <mrow>\n <mi>b</mi>\n <mo>-</mo>\n </mrow>\n <msup>\n <msub>\n <mtext>NO</mtext>\n <mn>3</mn>\n </msub>\n <mo>−</mo>\n </msup>\n </mrow>\n <annotation> $\\mathrm{b}\\mbox{-}{{\\text{NO}}_{3}}^{-}$</annotation>\n </semantics></math> were lost after passing through canopies of broadleaved and coniferous forests, respectively. Importantly, both <math>\n <semantics>\n <mrow>\n <mrow>\n <mi>t</mi>\n <mo>-</mo>\n </mrow>\n <msup>\n <msub>\n <mtext>NO</mtext>\n <mn>3</mn>\n </msub>\n <mo>−</mo>\n </msup>\n </mrow>\n <annotation> $\\mathrm{t}\\mbox{-}{{\\text{NO}}_{3}}^{-}$</annotation>\n </semantics></math> gain and <math>\n <semantics>\n <mrow>\n <mrow>\n <mi>b</mi>\n <mo>-</mo>\n </mrow>\n <msup>\n <msub>\n <mtext>NO</mtext>\n <mn>3</mn>\n </msub>\n <mo>−</mo>\n </msup>\n </mrow>\n <annotation> $\\mathrm{b}\\mbox{-}{{\\text{NO}}_{3}}^{-}$</annotation>\n </semantics></math> loss fluxes were found increasing with the <math>\n <semantics>\n <mrow>\n <mrow>\n <mi>b</mi>\n <mo>-</mo>\n </mrow>\n <msup>\n <msub>\n <mtext>NO</mtext>\n <mn>3</mn>\n </msub>\n <mo>−</mo>\n </msup>\n </mrow>\n <annotation> $\\mathrm{b}\\mbox{-}{{\\text{NO}}_{3}}^{-}$</annotation>\n </semantics></math> fluxes. This work unlocked fractions and fluxes of major precipitation-canopy <math>\n <semantics>\n <mrow>\n <msup>\n <msub>\n <mtext>NO</mtext>\n <mn>3</mn>\n </msub>\n <mo>−</mo>\n </msup>\n </mrow>\n <annotation> ${{\\text{NO}}_{3}}^{-}$</annotation>\n </semantics></math> exchange processes and revealed a stimulating mechanism of atmospheric <math>\n <semantics>\n <mrow>\n <msup>\n <msub>\n <mtext>NO</mtext>\n <mn>3</mn>\n </msub>\n <mo>−</mo>\n </msup>\n </mrow>\n <annotation> ${{\\text{NO}}_{3}}^{-}$</annotation>\n </semantics></math> pollution on precipitation-canopy <math>\n <semantics>\n <mrow>\n <msup>\n <msub>\n <mtext>NO</mtext>\n <mn>3</mn>\n </msub>\n <mo>−</mo>\n </msup>\n </mrow>\n <annotation> ${{\\text{NO}}_{3}}^{-}$</annotation>\n </semantics></math> exchanges.</p>","PeriodicalId":12729,"journal":{"name":"Global Biogeochemical Cycles","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2023-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Isotope Constraints on Nitrate Exchanges Between Precipitation and Forest Canopy\",\"authors\":\"Xue-Yan Liu,&nbsp;Mei-Na Liu,&nbsp;Wan-Xiao Qin,&nbsp;Wei Song\",\"doi\":\"10.1029/2023GB007920\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Atmospheric nitrogen (N) deposition is a key process influencing plant-soil N processes and associated functions of forest ecosystems. However, the N deposition into soils based on open-field precipitation observations remains inaccurate due to the unconstrained precipitation-canopy N exchanges, which prevents a better evaluation of N deposition effects on forest N cycles and functions. Nitrate (<math>\\n <semantics>\\n <mrow>\\n <msup>\\n <msub>\\n <mtext>NO</mtext>\\n <mn>3</mn>\\n </msub>\\n <mo>−</mo>\\n </msup>\\n </mrow>\\n <annotation> ${{\\\\text{NO}}_{3}}^{-}$</annotation>\\n </semantics></math>) is a major form of reactive N. Based on a data synthesis of fluxes and isotopes (<sup>15</sup>N, <sup>17</sup>O, <sup>18</sup>O) of atmospheric <math>\\n <semantics>\\n <mrow>\\n <msup>\\n <msub>\\n <mtext>NO</mtext>\\n <mn>3</mn>\\n </msub>\\n <mo>−</mo>\\n </msup>\\n </mrow>\\n <annotation> ${{\\\\text{NO}}_{3}}^{-}$</annotation>\\n </semantics></math> inputs in forests, here we constructed a new method to quantify fractions and fluxes of throughfall <math>\\n <semantics>\\n <mrow>\\n <msup>\\n <msub>\\n <mtext>NO</mtext>\\n <mn>3</mn>\\n </msub>\\n <mo>−</mo>\\n </msup>\\n </mrow>\\n <annotation> ${{\\\\text{NO}}_{3}}^{-}$</annotation>\\n </semantics></math> (<math>\\n <semantics>\\n <mrow>\\n <mrow>\\n <mi>t</mi>\\n <mo>-</mo>\\n </mrow>\\n <msup>\\n <msub>\\n <mtext>NO</mtext>\\n <mn>3</mn>\\n </msub>\\n <mo>−</mo>\\n </msup>\\n </mrow>\\n <annotation> $\\\\mathrm{t}\\\\mbox{-}{{\\\\text{NO}}_{3}}^{-}$</annotation>\\n </semantics></math>) contributors (nitrification (<math>\\n <semantics>\\n <mrow>\\n <mrow>\\n <mi>n</mi>\\n <mo>-</mo>\\n </mrow>\\n <msup>\\n <msub>\\n <mtext>NO</mtext>\\n <mn>3</mn>\\n </msub>\\n <mo>−</mo>\\n </msup>\\n </mrow>\\n <annotation> $\\\\mathrm{n}\\\\mbox{-}{{\\\\text{NO}}_{3}}^{-}$</annotation>\\n </semantics></math>) and particulates (<math>\\n <semantics>\\n <mrow>\\n <mrow>\\n <mi>p</mi>\\n <mo>-</mo>\\n </mrow>\\n <msup>\\n <msub>\\n <mtext>NO</mtext>\\n <mn>3</mn>\\n </msub>\\n <mo>−</mo>\\n </msup>\\n </mrow>\\n <annotation> $\\\\mathrm{p}\\\\mbox{-}{{\\\\text{NO}}_{3}}^{-}$</annotation>\\n </semantics></math>) in canopies, the original precipitation (<math>\\n <semantics>\\n <mrow>\\n <mrow>\\n <mi>b</mi>\\n <mo>-</mo>\\n </mrow>\\n <msup>\\n <msub>\\n <mtext>NO</mtext>\\n <mn>3</mn>\\n </msub>\\n <mo>−</mo>\\n </msup>\\n </mrow>\\n <annotation> $\\\\mathrm{b}\\\\mbox{-}{{\\\\text{NO}}_{3}}^{-}$</annotation>\\n </semantics></math>)) and then constrain precipitation-canopy <math>\\n <semantics>\\n <mrow>\\n <msup>\\n <msub>\\n <mtext>NO</mtext>\\n <mn>3</mn>\\n </msub>\\n <mo>−</mo>\\n </msup>\\n </mrow>\\n <annotation> ${{\\\\text{NO}}_{3}}^{-}$</annotation>\\n </semantics></math> exchanges (i.e., <math>\\n <semantics>\\n <mrow>\\n <mrow>\\n <mi>t</mi>\\n <mo>-</mo>\\n </mrow>\\n <msup>\\n <msub>\\n <mtext>NO</mtext>\\n <mn>3</mn>\\n </msub>\\n <mo>−</mo>\\n </msup>\\n </mrow>\\n <annotation> $\\\\mathrm{t}\\\\mbox{-}{{\\\\text{NO}}_{3}}^{-}$</annotation>\\n </semantics></math> gains from canopy and <math>\\n <semantics>\\n <mrow>\\n <mrow>\\n <mi>b</mi>\\n <mo>-</mo>\\n </mrow>\\n <msup>\\n <msub>\\n <mtext>NO</mtext>\\n <mn>3</mn>\\n </msub>\\n <mo>−</mo>\\n </msup>\\n </mrow>\\n <annotation> $\\\\mathrm{b}\\\\mbox{-}{{\\\\text{NO}}_{3}}^{-}$</annotation>\\n </semantics></math> losses due to canopy retention). Generally, <math>\\n <semantics>\\n <mrow>\\n <mrow>\\n <mi>t</mi>\\n <mo>-</mo>\\n </mrow>\\n <msup>\\n <msub>\\n <mtext>NO</mtext>\\n <mn>3</mn>\\n </msub>\\n <mo>−</mo>\\n </msup>\\n </mrow>\\n <annotation> $\\\\mathrm{t}\\\\mbox{-}{{\\\\text{NO}}_{3}}^{-}$</annotation>\\n </semantics></math> was higher in fluxes but lower in N and O isotopes than <math>\\n <semantics>\\n <mrow>\\n <mrow>\\n <mi>b</mi>\\n <mo>-</mo>\\n </mrow>\\n <msup>\\n <msub>\\n <mtext>NO</mtext>\\n <mn>3</mn>\\n </msub>\\n <mo>−</mo>\\n </msup>\\n </mrow>\\n <annotation> $\\\\mathrm{b}\\\\mbox{-}{{\\\\text{NO}}_{3}}^{-}$</annotation>\\n </semantics></math>, suggesting higher gains than losses and canopy nitrification as a gain contributor. 10%−18% and 40%−47% of <math>\\n <semantics>\\n <mrow>\\n <mrow>\\n <mi>t</mi>\\n <mo>-</mo>\\n </mrow>\\n <msup>\\n <msub>\\n <mtext>NO</mtext>\\n <mn>3</mn>\\n </msub>\\n <mo>−</mo>\\n </msup>\\n </mrow>\\n <annotation> $\\\\mathrm{t}\\\\mbox{-}{{\\\\text{NO}}_{3}}^{-}$</annotation>\\n </semantics></math> were gained from canopy <math>\\n <semantics>\\n <mrow>\\n <mrow>\\n <mi>n</mi>\\n <mo>-</mo>\\n </mrow>\\n <msup>\\n <msub>\\n <mtext>NO</mtext>\\n <mn>3</mn>\\n </msub>\\n <mo>−</mo>\\n </msup>\\n </mrow>\\n <annotation> $\\\\mathrm{n}\\\\mbox{-}{{\\\\text{NO}}_{3}}^{-}$</annotation>\\n </semantics></math> and <math>\\n <semantics>\\n <mrow>\\n <mrow>\\n <mi>p</mi>\\n <mo>-</mo>\\n </mrow>\\n <msup>\\n <msub>\\n <mtext>NO</mtext>\\n <mn>3</mn>\\n </msub>\\n <mo>−</mo>\\n </msup>\\n </mrow>\\n <annotation> $\\\\mathrm{p}\\\\mbox{-}{{\\\\text{NO}}_{3}}^{-}$</annotation>\\n </semantics></math>, respectively, while 43% ± 25% and 20% ± 74% of the original <math>\\n <semantics>\\n <mrow>\\n <mrow>\\n <mi>b</mi>\\n <mo>-</mo>\\n </mrow>\\n <msup>\\n <msub>\\n <mtext>NO</mtext>\\n <mn>3</mn>\\n </msub>\\n <mo>−</mo>\\n </msup>\\n </mrow>\\n <annotation> $\\\\mathrm{b}\\\\mbox{-}{{\\\\text{NO}}_{3}}^{-}$</annotation>\\n </semantics></math> were lost after passing through canopies of broadleaved and coniferous forests, respectively. Importantly, both <math>\\n <semantics>\\n <mrow>\\n <mrow>\\n <mi>t</mi>\\n <mo>-</mo>\\n </mrow>\\n <msup>\\n <msub>\\n <mtext>NO</mtext>\\n <mn>3</mn>\\n </msub>\\n <mo>−</mo>\\n </msup>\\n </mrow>\\n <annotation> $\\\\mathrm{t}\\\\mbox{-}{{\\\\text{NO}}_{3}}^{-}$</annotation>\\n </semantics></math> gain and <math>\\n <semantics>\\n <mrow>\\n <mrow>\\n <mi>b</mi>\\n <mo>-</mo>\\n </mrow>\\n <msup>\\n <msub>\\n <mtext>NO</mtext>\\n <mn>3</mn>\\n </msub>\\n <mo>−</mo>\\n </msup>\\n </mrow>\\n <annotation> $\\\\mathrm{b}\\\\mbox{-}{{\\\\text{NO}}_{3}}^{-}$</annotation>\\n </semantics></math> loss fluxes were found increasing with the <math>\\n <semantics>\\n <mrow>\\n <mrow>\\n <mi>b</mi>\\n <mo>-</mo>\\n </mrow>\\n <msup>\\n <msub>\\n <mtext>NO</mtext>\\n <mn>3</mn>\\n </msub>\\n <mo>−</mo>\\n </msup>\\n </mrow>\\n <annotation> $\\\\mathrm{b}\\\\mbox{-}{{\\\\text{NO}}_{3}}^{-}$</annotation>\\n </semantics></math> fluxes. This work unlocked fractions and fluxes of major precipitation-canopy <math>\\n <semantics>\\n <mrow>\\n <msup>\\n <msub>\\n <mtext>NO</mtext>\\n <mn>3</mn>\\n </msub>\\n <mo>−</mo>\\n </msup>\\n </mrow>\\n <annotation> ${{\\\\text{NO}}_{3}}^{-}$</annotation>\\n </semantics></math> exchange processes and revealed a stimulating mechanism of atmospheric <math>\\n <semantics>\\n <mrow>\\n <msup>\\n <msub>\\n <mtext>NO</mtext>\\n <mn>3</mn>\\n </msub>\\n <mo>−</mo>\\n </msup>\\n </mrow>\\n <annotation> ${{\\\\text{NO}}_{3}}^{-}$</annotation>\\n </semantics></math> pollution on precipitation-canopy <math>\\n <semantics>\\n <mrow>\\n <msup>\\n <msub>\\n <mtext>NO</mtext>\\n <mn>3</mn>\\n </msub>\\n <mo>−</mo>\\n </msup>\\n </mrow>\\n <annotation> ${{\\\\text{NO}}_{3}}^{-}$</annotation>\\n </semantics></math> exchanges.</p>\",\"PeriodicalId\":12729,\"journal\":{\"name\":\"Global Biogeochemical Cycles\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2023-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Global Biogeochemical Cycles\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1029/2023GB007920\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Global Biogeochemical Cycles","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2023GB007920","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

大气氮沉降是影响森林生态系统植物-土壤氮过程及其相关功能的关键过程。然而,由于降水-冠层间氮交换不受约束,基于野外降水观测的土壤氮沉降仍不准确,无法更好地评价氮沉降对森林氮循环和功能的影响。硝酸(no3−${{\text{NO}}_{3}}^{-}$)是反应态氮的主要形式。18O)大气NO 3−${{\text{NO}}_{3}}^{-}$森林输入;本文建立了一种新的方法来量化no3的分数和通量- ${{\text{NO}}_{3}}^{-}$ (t - NO)3−$\ mathm {t}\mbox{-}{{\text{NO}}_{3}}^{-}$)贡献者(硝化(n - NO) 3−$\mathrm{n}\mbox{-}{{\text{NO}}_{3}}^{-}$)和粒子(p - no3−$\mathrm{p}\mbox{-}{{\text{NO}}_{3}}^{-}$)原始降水(b - no3−$\mathrm{b}\mbox{-}{{\text{NO}}_{3}}^{-}$)),然后约束降水-冠层NO 3−${{\text{NO}}_{3}}^{-}$交换(即:t - NO 3−$\mathrm{t}\mbox{-}{{\text{NO}}_{3}}^{-}$从树冠和b -获得的收益NO 3−$\ mathm {b}\mbox{-}{{\text{NO}}_{3}}^{-}$由于树冠滞留造成的损失)。一般来说,t - no3−$\ maththrm {t}\mbox{-}{{\text{NO}}_{3}}^{-}$的通量比b -高,但N和O同位素的通量比b -低no3−$\mathrm{b}\mbox{-}{{\text{NO}}_{3}}^{-}$,表明收益高于损失和冠层硝化作用对收益的贡献。 t - no3 - $\ mathm {t}\mbox{-}{{\text{NO}}_{3}}^{-}$的10% ~ 18%和40% ~ 47%分别来自冠层n -NO 3−$\ mathm {n}\mbox{-}{{\text{NO}}_{3}}^{-}$和p - NO 3−$\mathrm{p}\mbox{-}{{\text{NO}}_{3}}^{-}$原始b - no3 - $ $ mathm {b}\mbox{-}{{\text{NO}}_{3}}^{-}$经过阔叶林和针叶林林冠层后分别损失43%±25%和20%±74%。重要的是,t - NO 3 - $\ mathm {t}\mbox{-}{{\text{NO}}_{3}}^{-}$ gain和b -no3−$\mathrm{b}\mbox{-}{{\text{NO}}_{3}}^{-}$损失通量随b - no3−的增加而增加美元\ mathrm {b} \ mbox{-}{{\文本{没有}}_ {3 }}^{-}$ 通量。本研究揭示了主要降水—冠层NO 3−${{\text{NO}}_{3}}^{-}$交换过程的组分和通量,揭示了大气NO的刺激机制3−${{\text{NO}}_{3}}^{-}$污染对降水-冠层NO的影响3−${{\text{NO}}_{3}}^{-}$交换。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Isotope Constraints on Nitrate Exchanges Between Precipitation and Forest Canopy

Atmospheric nitrogen (N) deposition is a key process influencing plant-soil N processes and associated functions of forest ecosystems. However, the N deposition into soils based on open-field precipitation observations remains inaccurate due to the unconstrained precipitation-canopy N exchanges, which prevents a better evaluation of N deposition effects on forest N cycles and functions. Nitrate ( NO 3 ${{\text{NO}}_{3}}^{-}$ ) is a major form of reactive N. Based on a data synthesis of fluxes and isotopes (15N, 17O, 18O) of atmospheric NO 3 ${{\text{NO}}_{3}}^{-}$ inputs in forests, here we constructed a new method to quantify fractions and fluxes of throughfall NO 3 ${{\text{NO}}_{3}}^{-}$ ( t - NO 3 $\mathrm{t}\mbox{-}{{\text{NO}}_{3}}^{-}$ ) contributors (nitrification ( n - NO 3 $\mathrm{n}\mbox{-}{{\text{NO}}_{3}}^{-}$ ) and particulates ( p - NO 3 $\mathrm{p}\mbox{-}{{\text{NO}}_{3}}^{-}$ ) in canopies, the original precipitation ( b - NO 3 $\mathrm{b}\mbox{-}{{\text{NO}}_{3}}^{-}$ )) and then constrain precipitation-canopy NO 3 ${{\text{NO}}_{3}}^{-}$ exchanges (i.e., t - NO 3 $\mathrm{t}\mbox{-}{{\text{NO}}_{3}}^{-}$ gains from canopy and b - NO 3 $\mathrm{b}\mbox{-}{{\text{NO}}_{3}}^{-}$ losses due to canopy retention). Generally, t - NO 3 $\mathrm{t}\mbox{-}{{\text{NO}}_{3}}^{-}$ was higher in fluxes but lower in N and O isotopes than b - NO 3 $\mathrm{b}\mbox{-}{{\text{NO}}_{3}}^{-}$ , suggesting higher gains than losses and canopy nitrification as a gain contributor. 10%−18% and 40%−47% of t - NO 3 $\mathrm{t}\mbox{-}{{\text{NO}}_{3}}^{-}$ were gained from canopy n - NO 3 $\mathrm{n}\mbox{-}{{\text{NO}}_{3}}^{-}$ and p - NO 3 $\mathrm{p}\mbox{-}{{\text{NO}}_{3}}^{-}$ , respectively, while 43% ± 25% and 20% ± 74% of the original b - NO 3 $\mathrm{b}\mbox{-}{{\text{NO}}_{3}}^{-}$ were lost after passing through canopies of broadleaved and coniferous forests, respectively. Importantly, both t - NO 3 $\mathrm{t}\mbox{-}{{\text{NO}}_{3}}^{-}$ gain and b - NO 3 $\mathrm{b}\mbox{-}{{\text{NO}}_{3}}^{-}$ loss fluxes were found increasing with the b - NO 3 $\mathrm{b}\mbox{-}{{\text{NO}}_{3}}^{-}$ fluxes. This work unlocked fractions and fluxes of major precipitation-canopy NO 3 ${{\text{NO}}_{3}}^{-}$ exchange processes and revealed a stimulating mechanism of atmospheric NO 3 ${{\text{NO}}_{3}}^{-}$ pollution on precipitation-canopy NO 3 ${{\text{NO}}_{3}}^{-}$ exchanges.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Global Biogeochemical Cycles
Global Biogeochemical Cycles 环境科学-地球科学综合
CiteScore
8.90
自引率
7.70%
发文量
141
审稿时长
8-16 weeks
期刊介绍: Global Biogeochemical Cycles (GBC) features research on regional to global biogeochemical interactions, as well as more local studies that demonstrate fundamental implications for biogeochemical processing at regional or global scales. Published papers draw on a wide array of methods and knowledge and extend in time from the deep geologic past to recent historical and potential future interactions. This broad scope includes studies that elucidate human activities as interactive components of biogeochemical cycles and physical Earth Systems including climate. Authors are required to make their work accessible to a broad interdisciplinary range of scientists.
期刊最新文献
Trends and Drivers of Terrestrial Sources and Sinks of Carbon Dioxide: An Overview of the TRENDY Project The Modeled Seasonal Cycles of Surface N2O Fluxes and Atmospheric N2O Physical Mechanisms Sustaining Silica Production Following the Demise of the Diatom Phase of the North Atlantic Spring Phytoplankton Bloom During EXPORTS Size-Fractionated Primary Production Dynamics During the Decline Phase of the North Atlantic Spring Bloom Observational and Numerical Modeling Constraints on the Global Ocean Biological Carbon Pump
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1