定量评估 LiPF6 作为基于 LiTFSI 的电池电解液中铝的腐蚀抑制添加剂 - 在线质谱研究

IF 4.7 3区 工程技术 Q2 ELECTROCHEMISTRY Electrochemistry Communications Pub Date : 2023-12-15 DOI:10.1016/j.elecom.2023.107646
Christopher Behling , Janik Lüchtefeld , Karl J.J. Mayrhofer , Balázs B. Berkes
{"title":"定量评估 LiPF6 作为基于 LiTFSI 的电池电解液中铝的腐蚀抑制添加剂 - 在线质谱研究","authors":"Christopher Behling ,&nbsp;Janik Lüchtefeld ,&nbsp;Karl J.J. Mayrhofer ,&nbsp;Balázs B. Berkes","doi":"10.1016/j.elecom.2023.107646","DOIUrl":null,"url":null,"abstract":"<div><p>Lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) is a promising candidate for future lithium-ion battery (LIB) electrolytes because of its increased stability and ionic conductivity. One major drawback of this salt, however, is its ability to dissolve Al, leading to a degradation of current collectors in LIBs over time. Surface passivating additives can reduce or even completely suppress the dissolution. A truly cost and material-efficient suppression, however, can only be achieved by identifying the ideal (i.e., minimal) amount of additive. Therefore, quantifying the dissolution-suppressing effect of additives is necessary to create an optimum electrolyte mixture. In this work, we examine the influence of lithium hexafluorophosphate (LiPF<sub>6</sub>) addition to LiTFSI-based electrolytes via cyclic voltammetry (CV) in an electroanalytical flow cell (EFC) coupled on-line to an inductively coupled plasma mass spectrometer (ICP-MS) for continuous downstream elemental analysis. This setup allows the potential resolved quantification of Al dissolution with unprecedented precision in real-time. With that, we found that already very small amounts of 0.02 M LiPF<sub>6</sub> added to 0.98 M LiTFSI will drastically reduce the total dissolved amount of Al during one CV cycle by a factor of ∼ 20, while electrolytes containing 0.30 M LiPF<sub>6</sub> (and 0.70 M LiTFSI) completely suppress the dissolution of Al. These findings allow the substitution of large portions of LiPF<sub>6</sub>, enabling the production of safer LIBs without risking current collector degradation.</p></div>","PeriodicalId":304,"journal":{"name":"Electrochemistry Communications","volume":null,"pages":null},"PeriodicalIF":4.7000,"publicationDate":"2023-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1388248123002217/pdfft?md5=92c17204fb02e07a342c14f02184750c&pid=1-s2.0-S1388248123002217-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Quantitative evaluation of LiPF6 as corrosion inhibiting additive for Al in LiTFSI-based battery electrolytes – An on-line mass spectrometric study\",\"authors\":\"Christopher Behling ,&nbsp;Janik Lüchtefeld ,&nbsp;Karl J.J. Mayrhofer ,&nbsp;Balázs B. Berkes\",\"doi\":\"10.1016/j.elecom.2023.107646\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) is a promising candidate for future lithium-ion battery (LIB) electrolytes because of its increased stability and ionic conductivity. One major drawback of this salt, however, is its ability to dissolve Al, leading to a degradation of current collectors in LIBs over time. Surface passivating additives can reduce or even completely suppress the dissolution. A truly cost and material-efficient suppression, however, can only be achieved by identifying the ideal (i.e., minimal) amount of additive. Therefore, quantifying the dissolution-suppressing effect of additives is necessary to create an optimum electrolyte mixture. In this work, we examine the influence of lithium hexafluorophosphate (LiPF<sub>6</sub>) addition to LiTFSI-based electrolytes via cyclic voltammetry (CV) in an electroanalytical flow cell (EFC) coupled on-line to an inductively coupled plasma mass spectrometer (ICP-MS) for continuous downstream elemental analysis. This setup allows the potential resolved quantification of Al dissolution with unprecedented precision in real-time. With that, we found that already very small amounts of 0.02 M LiPF<sub>6</sub> added to 0.98 M LiTFSI will drastically reduce the total dissolved amount of Al during one CV cycle by a factor of ∼ 20, while electrolytes containing 0.30 M LiPF<sub>6</sub> (and 0.70 M LiTFSI) completely suppress the dissolution of Al. These findings allow the substitution of large portions of LiPF<sub>6</sub>, enabling the production of safer LIBs without risking current collector degradation.</p></div>\",\"PeriodicalId\":304,\"journal\":{\"name\":\"Electrochemistry Communications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2023-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1388248123002217/pdfft?md5=92c17204fb02e07a342c14f02184750c&pid=1-s2.0-S1388248123002217-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electrochemistry Communications\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1388248123002217\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ELECTROCHEMISTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electrochemistry Communications","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1388248123002217","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0

摘要

双(三氟甲烷磺酰)亚胺锂(LiTFSI)具有更高的稳定性和离子导电性,是未来锂离子电池(LIB)电解质的理想候选材料。然而,这种盐的一个主要缺点是能够溶解铝,从而导致锂离子电池中的电流收集器随着时间的推移而退化。表面钝化添加剂可以减少甚至完全抑制溶解。然而,只有确定理想的(即最小的)添加剂用量,才能实现真正具有成本和材料效益的抑制作用。因此,有必要对添加剂的溶解抑制效果进行量化,以创建最佳的电解质混合物。在这项工作中,我们通过在电分析流动池(EFC)中与电感耦合等离子体质谱仪(ICP-MS)在线耦合的循环伏安法(CV)来研究六氟磷酸锂(LiPF6)添加到基于 LiTFSI 的电解质中对下游元素进行连续分析的影响。这种装置可以对铝的溶解进行前所未有的实时精确定量。我们发现,在 0.98 M LiTFSI 中加入极少量的 0.02 M LiPF6 就能在一个 CV 循环中将铝的总溶解量大幅减少 ∼ 20 倍,而含有 0.30 M LiPF6(和 0.70 M LiTFSI)的电解质则能完全抑制铝的溶解。这些发现允许替代大量的 LiPF6,从而能够生产出更安全的 LIB,而不会有集流器降解的风险。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Quantitative evaluation of LiPF6 as corrosion inhibiting additive for Al in LiTFSI-based battery electrolytes – An on-line mass spectrometric study

Lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) is a promising candidate for future lithium-ion battery (LIB) electrolytes because of its increased stability and ionic conductivity. One major drawback of this salt, however, is its ability to dissolve Al, leading to a degradation of current collectors in LIBs over time. Surface passivating additives can reduce or even completely suppress the dissolution. A truly cost and material-efficient suppression, however, can only be achieved by identifying the ideal (i.e., minimal) amount of additive. Therefore, quantifying the dissolution-suppressing effect of additives is necessary to create an optimum electrolyte mixture. In this work, we examine the influence of lithium hexafluorophosphate (LiPF6) addition to LiTFSI-based electrolytes via cyclic voltammetry (CV) in an electroanalytical flow cell (EFC) coupled on-line to an inductively coupled plasma mass spectrometer (ICP-MS) for continuous downstream elemental analysis. This setup allows the potential resolved quantification of Al dissolution with unprecedented precision in real-time. With that, we found that already very small amounts of 0.02 M LiPF6 added to 0.98 M LiTFSI will drastically reduce the total dissolved amount of Al during one CV cycle by a factor of ∼ 20, while electrolytes containing 0.30 M LiPF6 (and 0.70 M LiTFSI) completely suppress the dissolution of Al. These findings allow the substitution of large portions of LiPF6, enabling the production of safer LIBs without risking current collector degradation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Electrochemistry Communications
Electrochemistry Communications 工程技术-电化学
CiteScore
8.50
自引率
3.70%
发文量
160
审稿时长
1.2 months
期刊介绍: Electrochemistry Communications is an open access journal providing fast dissemination of short communications, full communications and mini reviews covering the whole field of electrochemistry which merit urgent publication. Short communications are limited to a maximum of 20,000 characters (including spaces) while full communications and mini reviews are limited to 25,000 characters (including spaces). Supplementary information is permitted for full communications and mini reviews but not for short communications. We aim to be the fastest journal in electrochemistry for these types of papers.
期刊最新文献
Electrocatalytic oxygen reduction at non-metalated and pyrolysis free hypercrosslinked polymers Long-term electrochemical characterization of novel Sr2FeMo0.65Ni0.35O6−δ fuel electrode for high-temperature steam electrolysis in solid oxide cells Remediation of shuttle effect in a Li-sulfur battery via a catalytic pseudo-8-electron redox reaction at the sulfur cathode Advanced electrocatalytic performance of the configuration entropy cobalt-free Bi0.5Sr0.5FeO3–δ cathode catalysts for solid oxide fuel cells Relatively low temperature defluorination and carbon coating in CFx by dimethyl silicone oil/polyethylene glycol for enhancing performance of lithium primary battery
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1