{"title":"利用行波离子迁移测量极低分子量代谢物及其在人体尿样中的应用","authors":"Alongkorn Kurilung, Suphitcha Limjiasahapong, Khwanta Kaewnarin, Pattipong Wisanpitayakorn, Narumol Jariyasopit, Kwanjeera Wanichthanarak, Sitanan Sartyoungkul, Stephen Choong Chee Wong, Nuankanya Sathirapongsasuti, Chagriya Kitiyakara, Yongyut Sirivatanauksorn, Sakda Khoomrung","doi":"10.1016/j.jpha.2023.12.011","DOIUrl":null,"url":null,"abstract":"<p>The collision cross-sections (CCS) measurement using ion mobility spectrometry (IMS) in combination with mass spectrometry (MS) offers a great opportunity to increase confidence in metabolite identification. However, owing to the lack of sensitivity and resolution, IMS has an analytical challenge in studying the CCS values of very low-molecular-weight metabolites (VLMs ≤ 250 Da). Here, we describe an analytical method using ultrahigh-performance liquid chromatography coupled to a traveling wave ion mobility-quadrupole-time-of-flight mass spectrometer optimized for the measurement of VLMs in human urine samples. The experimental CCS values, along with mass spectral properties were reported for the 174 metabolites. The experimental data included the mass-to-charge ratio (<em>m</em>/<em>z</em>), retention time (RT), tandem MS (MS/MS) spectra, and CCS values. Among the studied metabolites, 263 traveling wave ion mobility spectrometry (TWIMS)-derived CCS values (<sup>TW</sup>CCS<sub>N2</sub>) were reported for the first time, and more than 70% of these were CCS values of VLMs. The <sup>TW</sup>CCS<sub>N2</sub> values were highly repeatable, with inter-day variations of < 1% RSD. The developed method revealed excellent <sup>TW</sup>CCS<sub>N2</sub> accuracy with a CCS difference (ΔCCS) within ±2% of the reported drift tube IMS (DTIMS) and TWIMS CCS values. The complexity of the urine matrix did not affect the precision of the method, as evidenced by ΔCCS within ±1.92%. According to the Metabolomics Standards Initiative, 55 urinary metabolites were identified with a confidence level of 1. Among these 55 metabolites, 53 (96%) were VLMs. The larger number of confirmed compounds found in this study was a result of the addition of <sup>TW</sup>CCS<sub>N2</sub> values, which clearly increased metabolite identification confidence.</p>","PeriodicalId":16737,"journal":{"name":"Journal of Pharmaceutical Analysis","volume":"10 1","pages":""},"PeriodicalIF":6.1000,"publicationDate":"2023-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Measurement of very low-molecular weight metabolites by traveling wave ion mobility and its use in human urine samples\",\"authors\":\"Alongkorn Kurilung, Suphitcha Limjiasahapong, Khwanta Kaewnarin, Pattipong Wisanpitayakorn, Narumol Jariyasopit, Kwanjeera Wanichthanarak, Sitanan Sartyoungkul, Stephen Choong Chee Wong, Nuankanya Sathirapongsasuti, Chagriya Kitiyakara, Yongyut Sirivatanauksorn, Sakda Khoomrung\",\"doi\":\"10.1016/j.jpha.2023.12.011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The collision cross-sections (CCS) measurement using ion mobility spectrometry (IMS) in combination with mass spectrometry (MS) offers a great opportunity to increase confidence in metabolite identification. However, owing to the lack of sensitivity and resolution, IMS has an analytical challenge in studying the CCS values of very low-molecular-weight metabolites (VLMs ≤ 250 Da). Here, we describe an analytical method using ultrahigh-performance liquid chromatography coupled to a traveling wave ion mobility-quadrupole-time-of-flight mass spectrometer optimized for the measurement of VLMs in human urine samples. The experimental CCS values, along with mass spectral properties were reported for the 174 metabolites. The experimental data included the mass-to-charge ratio (<em>m</em>/<em>z</em>), retention time (RT), tandem MS (MS/MS) spectra, and CCS values. Among the studied metabolites, 263 traveling wave ion mobility spectrometry (TWIMS)-derived CCS values (<sup>TW</sup>CCS<sub>N2</sub>) were reported for the first time, and more than 70% of these were CCS values of VLMs. The <sup>TW</sup>CCS<sub>N2</sub> values were highly repeatable, with inter-day variations of < 1% RSD. The developed method revealed excellent <sup>TW</sup>CCS<sub>N2</sub> accuracy with a CCS difference (ΔCCS) within ±2% of the reported drift tube IMS (DTIMS) and TWIMS CCS values. The complexity of the urine matrix did not affect the precision of the method, as evidenced by ΔCCS within ±1.92%. According to the Metabolomics Standards Initiative, 55 urinary metabolites were identified with a confidence level of 1. Among these 55 metabolites, 53 (96%) were VLMs. The larger number of confirmed compounds found in this study was a result of the addition of <sup>TW</sup>CCS<sub>N2</sub> values, which clearly increased metabolite identification confidence.</p>\",\"PeriodicalId\":16737,\"journal\":{\"name\":\"Journal of Pharmaceutical Analysis\",\"volume\":\"10 1\",\"pages\":\"\"},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2023-12-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Pharmaceutical Analysis\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jpha.2023.12.011\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pharmaceutical Analysis","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.jpha.2023.12.011","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
Measurement of very low-molecular weight metabolites by traveling wave ion mobility and its use in human urine samples
The collision cross-sections (CCS) measurement using ion mobility spectrometry (IMS) in combination with mass spectrometry (MS) offers a great opportunity to increase confidence in metabolite identification. However, owing to the lack of sensitivity and resolution, IMS has an analytical challenge in studying the CCS values of very low-molecular-weight metabolites (VLMs ≤ 250 Da). Here, we describe an analytical method using ultrahigh-performance liquid chromatography coupled to a traveling wave ion mobility-quadrupole-time-of-flight mass spectrometer optimized for the measurement of VLMs in human urine samples. The experimental CCS values, along with mass spectral properties were reported for the 174 metabolites. The experimental data included the mass-to-charge ratio (m/z), retention time (RT), tandem MS (MS/MS) spectra, and CCS values. Among the studied metabolites, 263 traveling wave ion mobility spectrometry (TWIMS)-derived CCS values (TWCCSN2) were reported for the first time, and more than 70% of these were CCS values of VLMs. The TWCCSN2 values were highly repeatable, with inter-day variations of < 1% RSD. The developed method revealed excellent TWCCSN2 accuracy with a CCS difference (ΔCCS) within ±2% of the reported drift tube IMS (DTIMS) and TWIMS CCS values. The complexity of the urine matrix did not affect the precision of the method, as evidenced by ΔCCS within ±1.92%. According to the Metabolomics Standards Initiative, 55 urinary metabolites were identified with a confidence level of 1. Among these 55 metabolites, 53 (96%) were VLMs. The larger number of confirmed compounds found in this study was a result of the addition of TWCCSN2 values, which clearly increased metabolite identification confidence.
期刊介绍:
The Journal of Pharmaceutical Analysis (JPA), established in 2011, serves as the official publication of Xi'an Jiaotong University.
JPA is a monthly, peer-reviewed, open-access journal dedicated to disseminating noteworthy original research articles, review papers, short communications, news, research highlights, and editorials in the realm of Pharmacy Analysis. Encompassing a wide spectrum of topics, including Pharmaceutical Analysis, Analytical Techniques and Methods, Pharmacology, Metabolism, Drug Delivery, Cellular Imaging & Analysis, Natural Products, and Biosensing, JPA provides a comprehensive platform for scholarly discourse and innovation in the field.