通过模型和定量分析使周期性复制系统的成本最小化

IF 3.4 3区 计算机科学 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS Frontiers of Computer Science Pub Date : 2023-12-16 DOI:10.1007/s11704-023-2625-8
Chenhao Zhang, Liang Wang, Limin Xiao, Shixuan Jiang, Meng Han, Jinquan Wang, Bing Wei, Guangjun Qin
{"title":"通过模型和定量分析使周期性复制系统的成本最小化","authors":"Chenhao Zhang, Liang Wang, Limin Xiao, Shixuan Jiang, Meng Han, Jinquan Wang, Bing Wei, Guangjun Qin","doi":"10.1007/s11704-023-2625-8","DOIUrl":null,"url":null,"abstract":"<p>Geographically replicating objects across multiple data centers improves the performance and reliability of cloud storage systems. Maintaining consistent replicas comes with high synchronization costs, as it faces more expensive WAN transport prices and increased latency. Periodic replication is the widely used technique to reduce the synchronization costs. Periodic replication strategies in existing cloud storage systems are too static to handle traffic changes, which indicates that they are inflexible in the face of unforeseen loads, resulting in additional synchronization cost. We propose quantitative analysis models to quantify consistency and synchronization cost for periodically replicated systems, and derive the optimal synchronization period to achieve the best tradeoff between consistency and synchronization cost. Based on this, we propose a dynamic periodic synchronization method, Sync-Opt, which allows systems to set the optimal synchronization period according to the variable load in clouds to minimize the synchronization cost. Simulation results demonstrate the effectiveness of our models. Compared with the policies widely used in modern cloud storage systems, the Sync-Opt strategy significantly reduces the synchronization cost.</p>","PeriodicalId":12640,"journal":{"name":"Frontiers of Computer Science","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2023-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Minimizing the cost of periodically replicated systems via model and quantitative analysis\",\"authors\":\"Chenhao Zhang, Liang Wang, Limin Xiao, Shixuan Jiang, Meng Han, Jinquan Wang, Bing Wei, Guangjun Qin\",\"doi\":\"10.1007/s11704-023-2625-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Geographically replicating objects across multiple data centers improves the performance and reliability of cloud storage systems. Maintaining consistent replicas comes with high synchronization costs, as it faces more expensive WAN transport prices and increased latency. Periodic replication is the widely used technique to reduce the synchronization costs. Periodic replication strategies in existing cloud storage systems are too static to handle traffic changes, which indicates that they are inflexible in the face of unforeseen loads, resulting in additional synchronization cost. We propose quantitative analysis models to quantify consistency and synchronization cost for periodically replicated systems, and derive the optimal synchronization period to achieve the best tradeoff between consistency and synchronization cost. Based on this, we propose a dynamic periodic synchronization method, Sync-Opt, which allows systems to set the optimal synchronization period according to the variable load in clouds to minimize the synchronization cost. Simulation results demonstrate the effectiveness of our models. Compared with the policies widely used in modern cloud storage systems, the Sync-Opt strategy significantly reduces the synchronization cost.</p>\",\"PeriodicalId\":12640,\"journal\":{\"name\":\"Frontiers of Computer Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2023-12-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers of Computer Science\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s11704-023-2625-8\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers of Computer Science","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s11704-023-2625-8","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

在多个数据中心对对象进行地理复制可提高云存储系统的性能和可靠性。保持一致的复制需要高昂的同步成本,因为它面临着更昂贵的广域网传输价格和更高的延迟。定期复制是降低同步成本的广泛应用技术。现有云存储系统中的定期复制策略过于静态,无法应对流量变化,这表明它们在面对不可预见的负载时缺乏灵活性,从而导致额外的同步成本。我们提出了量化分析模型来量化周期性复制系统的一致性和同步成本,并推导出最佳同步周期,以实现一致性和同步成本之间的最佳权衡。在此基础上,我们提出了一种动态周期同步方法 Sync-Opt,它允许系统根据云中的可变负载设置最佳同步周期,从而使同步成本最小化。仿真结果证明了我们模型的有效性。与现代云存储系统中广泛使用的策略相比,Sync-Opt 策略大大降低了同步成本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Minimizing the cost of periodically replicated systems via model and quantitative analysis

Geographically replicating objects across multiple data centers improves the performance and reliability of cloud storage systems. Maintaining consistent replicas comes with high synchronization costs, as it faces more expensive WAN transport prices and increased latency. Periodic replication is the widely used technique to reduce the synchronization costs. Periodic replication strategies in existing cloud storage systems are too static to handle traffic changes, which indicates that they are inflexible in the face of unforeseen loads, resulting in additional synchronization cost. We propose quantitative analysis models to quantify consistency and synchronization cost for periodically replicated systems, and derive the optimal synchronization period to achieve the best tradeoff between consistency and synchronization cost. Based on this, we propose a dynamic periodic synchronization method, Sync-Opt, which allows systems to set the optimal synchronization period according to the variable load in clouds to minimize the synchronization cost. Simulation results demonstrate the effectiveness of our models. Compared with the policies widely used in modern cloud storage systems, the Sync-Opt strategy significantly reduces the synchronization cost.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Frontiers of Computer Science
Frontiers of Computer Science COMPUTER SCIENCE, INFORMATION SYSTEMS-COMPUTER SCIENCE, SOFTWARE ENGINEERING
CiteScore
8.60
自引率
2.40%
发文量
799
审稿时长
6-12 weeks
期刊介绍: Frontiers of Computer Science aims to provide a forum for the publication of peer-reviewed papers to promote rapid communication and exchange between computer scientists. The journal publishes research papers and review articles in a wide range of topics, including: architecture, software, artificial intelligence, theoretical computer science, networks and communication, information systems, multimedia and graphics, information security, interdisciplinary, etc. The journal especially encourages papers from new emerging and multidisciplinary areas, as well as papers reflecting the international trends of research and development and on special topics reporting progress made by Chinese computer scientists.
期刊最新文献
A comprehensive survey of federated transfer learning: challenges, methods and applications DMFVAE: miRNA-disease associations prediction based on deep matrix factorization method with variational autoencoder Graph foundation model ABLkit: a Python toolkit for abductive learning SEOE: an option graph based semantically embedding method for prenatal depression detection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1