{"title":"用于非凸最小化的布雷格曼惯性前向-反射-后向方法","authors":"Xianfu Wang, Ziyuan Wang","doi":"10.1007/s10898-023-01348-y","DOIUrl":null,"url":null,"abstract":"<p>We propose a Bregman inertial forward-reflected-backward (BiFRB) method for nonconvex composite problems. Assuming the generalized concave Kurdyka-Łojasiewicz property, we obtain sequential convergence of BiFRB, as well as convergence rates on both the function value and actual sequence. One distinguishing feature in our analysis is that we utilize a careful treatment of merit function parameters, circumventing the usual restrictive assumption on the inertial parameters. We also present formulae for the Bregman subproblem, supplementing not only BiFRB but also the work of Boţ-Csetnek-László and Boţ-Csetnek. Numerical simulations are conducted to evaluate the performance of our proposed algorithm.\n</p>","PeriodicalId":15961,"journal":{"name":"Journal of Global Optimization","volume":"8 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2023-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Bregman inertial forward-reflected-backward method for nonconvex minimization\",\"authors\":\"Xianfu Wang, Ziyuan Wang\",\"doi\":\"10.1007/s10898-023-01348-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We propose a Bregman inertial forward-reflected-backward (BiFRB) method for nonconvex composite problems. Assuming the generalized concave Kurdyka-Łojasiewicz property, we obtain sequential convergence of BiFRB, as well as convergence rates on both the function value and actual sequence. One distinguishing feature in our analysis is that we utilize a careful treatment of merit function parameters, circumventing the usual restrictive assumption on the inertial parameters. We also present formulae for the Bregman subproblem, supplementing not only BiFRB but also the work of Boţ-Csetnek-László and Boţ-Csetnek. Numerical simulations are conducted to evaluate the performance of our proposed algorithm.\\n</p>\",\"PeriodicalId\":15961,\"journal\":{\"name\":\"Journal of Global Optimization\",\"volume\":\"8 1\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2023-12-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Global Optimization\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10898-023-01348-y\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Global Optimization","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10898-023-01348-y","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
A Bregman inertial forward-reflected-backward method for nonconvex minimization
We propose a Bregman inertial forward-reflected-backward (BiFRB) method for nonconvex composite problems. Assuming the generalized concave Kurdyka-Łojasiewicz property, we obtain sequential convergence of BiFRB, as well as convergence rates on both the function value and actual sequence. One distinguishing feature in our analysis is that we utilize a careful treatment of merit function parameters, circumventing the usual restrictive assumption on the inertial parameters. We also present formulae for the Bregman subproblem, supplementing not only BiFRB but also the work of Boţ-Csetnek-László and Boţ-Csetnek. Numerical simulations are conducted to evaluate the performance of our proposed algorithm.
期刊介绍:
The Journal of Global Optimization publishes carefully refereed papers that encompass theoretical, computational, and applied aspects of global optimization. While the focus is on original research contributions dealing with the search for global optima of non-convex, multi-extremal problems, the journal’s scope covers optimization in the widest sense, including nonlinear, mixed integer, combinatorial, stochastic, robust, multi-objective optimization, computational geometry, and equilibrium problems. Relevant works on data-driven methods and optimization-based data mining are of special interest.
In addition to papers covering theory and algorithms of global optimization, the journal publishes significant papers on numerical experiments, new testbeds, and applications in engineering, management, and the sciences. Applications of particular interest include healthcare, computational biochemistry, energy systems, telecommunications, and finance. Apart from full-length articles, the journal features short communications on both open and solved global optimization problems. It also offers reviews of relevant books and publishes special issues.