{"title":"聚合物纳米颗粒给药可避免细菌对环丙沙星产生耐药性","authors":"Abdullah A. Ghawanmeh","doi":"10.1007/s40199-023-00498-4","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Objective</h3><p>The efficient inhibition of bacteria and their by-products from infected root canals is hampered by the limitations of traditional root canal disinfection strategies, bacterial resistance to antibiotic drugs, and regenerative endodontics. Polymeric nanoparticles nanocarrier for controlling antibiotic drug delivery were used to overcome the limitations encountered in endodontics treatment.</p><h3 data-test=\"abstract-sub-heading\">Background</h3><p>Several polymeric nanoparticles have been used for the delivery of ciprofloxacin drug. The application of poly (ethylene glycol) methyl ether-block-poly(lactide-co-glycolide) (PEG-PLGA) nanoparticles has highlighted the clean and safe delivery of ciprofloxacin (CIP) hydrophilic drug for endodontics treatment. PEG/PLGA was prepared using the solid/oil/water method and the CIP was loaded into polymeric nanoparticles via an ion pairing agent.</p><h3 data-test=\"abstract-sub-heading\">Results</h3><p>The CIP-loaded PEG-PLGA nanoparticles have a spherical shape with a 120 ± 0.43 nm size, the CIP encapsulating efficiency was 63.26 ± 9.24% with a loading content of 7.75 ± 1.13%, and sustained release was achieved over 168 h which followed Higuchi model with a non-Fickian mechanism. Moreover, CIP-loaded PEG-PLGA had low cytotoxicity to the stem cells of the apical papilla.</p><h3 data-test=\"abstract-sub-heading\">Conclusion</h3><p>The results conclude invigorating future perspectives of polymeric nanoparticles for a wide range of drug delivery for various disease treatments. It’s anticipated that these polymeric nanoparticles may divert new expectations in the future for topical antibiotic drug delivery with discrete intracellular medicament, and a safe and clean environment.</p><h3 data-test=\"abstract-sub-heading\">Graphical abstract</h3>\n","PeriodicalId":10888,"journal":{"name":"DARU Journal of Pharmaceutical Sciences","volume":"39 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2023-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Polymeric nanoparticles delivery circumvents bacterial resistance to ciprofloxacin\",\"authors\":\"Abdullah A. Ghawanmeh\",\"doi\":\"10.1007/s40199-023-00498-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3 data-test=\\\"abstract-sub-heading\\\">Objective</h3><p>The efficient inhibition of bacteria and their by-products from infected root canals is hampered by the limitations of traditional root canal disinfection strategies, bacterial resistance to antibiotic drugs, and regenerative endodontics. Polymeric nanoparticles nanocarrier for controlling antibiotic drug delivery were used to overcome the limitations encountered in endodontics treatment.</p><h3 data-test=\\\"abstract-sub-heading\\\">Background</h3><p>Several polymeric nanoparticles have been used for the delivery of ciprofloxacin drug. The application of poly (ethylene glycol) methyl ether-block-poly(lactide-co-glycolide) (PEG-PLGA) nanoparticles has highlighted the clean and safe delivery of ciprofloxacin (CIP) hydrophilic drug for endodontics treatment. PEG/PLGA was prepared using the solid/oil/water method and the CIP was loaded into polymeric nanoparticles via an ion pairing agent.</p><h3 data-test=\\\"abstract-sub-heading\\\">Results</h3><p>The CIP-loaded PEG-PLGA nanoparticles have a spherical shape with a 120 ± 0.43 nm size, the CIP encapsulating efficiency was 63.26 ± 9.24% with a loading content of 7.75 ± 1.13%, and sustained release was achieved over 168 h which followed Higuchi model with a non-Fickian mechanism. Moreover, CIP-loaded PEG-PLGA had low cytotoxicity to the stem cells of the apical papilla.</p><h3 data-test=\\\"abstract-sub-heading\\\">Conclusion</h3><p>The results conclude invigorating future perspectives of polymeric nanoparticles for a wide range of drug delivery for various disease treatments. It’s anticipated that these polymeric nanoparticles may divert new expectations in the future for topical antibiotic drug delivery with discrete intracellular medicament, and a safe and clean environment.</p><h3 data-test=\\\"abstract-sub-heading\\\">Graphical abstract</h3>\\n\",\"PeriodicalId\":10888,\"journal\":{\"name\":\"DARU Journal of Pharmaceutical Sciences\",\"volume\":\"39 1\",\"pages\":\"\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2023-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"DARU Journal of Pharmaceutical Sciences\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s40199-023-00498-4\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"DARU Journal of Pharmaceutical Sciences","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s40199-023-00498-4","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
Polymeric nanoparticles delivery circumvents bacterial resistance to ciprofloxacin
Objective
The efficient inhibition of bacteria and their by-products from infected root canals is hampered by the limitations of traditional root canal disinfection strategies, bacterial resistance to antibiotic drugs, and regenerative endodontics. Polymeric nanoparticles nanocarrier for controlling antibiotic drug delivery were used to overcome the limitations encountered in endodontics treatment.
Background
Several polymeric nanoparticles have been used for the delivery of ciprofloxacin drug. The application of poly (ethylene glycol) methyl ether-block-poly(lactide-co-glycolide) (PEG-PLGA) nanoparticles has highlighted the clean and safe delivery of ciprofloxacin (CIP) hydrophilic drug for endodontics treatment. PEG/PLGA was prepared using the solid/oil/water method and the CIP was loaded into polymeric nanoparticles via an ion pairing agent.
Results
The CIP-loaded PEG-PLGA nanoparticles have a spherical shape with a 120 ± 0.43 nm size, the CIP encapsulating efficiency was 63.26 ± 9.24% with a loading content of 7.75 ± 1.13%, and sustained release was achieved over 168 h which followed Higuchi model with a non-Fickian mechanism. Moreover, CIP-loaded PEG-PLGA had low cytotoxicity to the stem cells of the apical papilla.
Conclusion
The results conclude invigorating future perspectives of polymeric nanoparticles for a wide range of drug delivery for various disease treatments. It’s anticipated that these polymeric nanoparticles may divert new expectations in the future for topical antibiotic drug delivery with discrete intracellular medicament, and a safe and clean environment.
期刊介绍:
DARU Journal of Pharmaceutical Sciences is a peer-reviewed journal published on behalf of Tehran University of Medical Sciences. The journal encompasses all fields of the pharmaceutical sciences and presents timely research on all areas of drug conception, design, manufacture, classification and assessment.
The term DARU is derived from the Persian name meaning drug or medicine. This journal is a unique platform to improve the knowledge of researchers and scientists by publishing novel articles including basic and clinical investigations from members of the global scientific community in the forms of original articles, systematic or narrative reviews, meta-analyses, letters, and short communications.