监控多核嵌入式系统的性能,同时不影响其定时要求

IF 0.9 4区 计算机科学 Q4 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE Design Automation for Embedded Systems Pub Date : 2023-12-16 DOI:10.1007/s10617-023-09278-4
Leonardo Passig Horstmann, José Luis Conradi Hoffmann, Antônio Augusto Fröhlich
{"title":"监控多核嵌入式系统的性能,同时不影响其定时要求","authors":"Leonardo Passig Horstmann, José Luis Conradi Hoffmann, Antônio Augusto Fröhlich","doi":"10.1007/s10617-023-09278-4","DOIUrl":null,"url":null,"abstract":"<p>Monitoring the performance of multicore embedded systems is crucial to properly ensure their timing requirements. Collecting performance data is also very relevant for optimization and validation efforts. However, the strategies used to monitor and capture data in such systems are complex to design and implement since they must not interfere with the running system beyond the point at which the system’s timing and performance characteristics start to get affected by the monitoring strategies. In this paper, we extend a monitoring framework developed in previous work to encompass three monitoring strategies, namely Active and Passive Periodic monitoring and Job-based monitoring. Periodic monitoring follows a given sampling rate. Active Periodic relies on periodic timer interrupts to guarantee deterministic sampling, while Passive Periodic trades determinism for a less invasive strategy, sampling data only when ordinary system events are handled. Job-based follows an event-driven monitoring that samples data whenever a job leaves the CPU, thus building isolated traces for each job. We evaluate them according to overhead, latency, and jitter, where none of them presented an average impact on the system execution time higher than <span>\\(0.3\\%\\)</span>. Moreover, a qualitative analysis is conducted in terms of data quality. On one hand, while Periodic monitoring allows for configurable sampling rates, it does not account for the rescheduling of jobs and may capture mixed traces. On the other hand, Job-based monitoring provides data samples tied to the execution of each job while disregarding sampling rate configuration and may lose track of instant measures.</p>","PeriodicalId":50594,"journal":{"name":"Design Automation for Embedded Systems","volume":"32 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2023-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Monitoring the performance of multicore embedded systems without disrupting its timing requirements\",\"authors\":\"Leonardo Passig Horstmann, José Luis Conradi Hoffmann, Antônio Augusto Fröhlich\",\"doi\":\"10.1007/s10617-023-09278-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Monitoring the performance of multicore embedded systems is crucial to properly ensure their timing requirements. Collecting performance data is also very relevant for optimization and validation efforts. However, the strategies used to monitor and capture data in such systems are complex to design and implement since they must not interfere with the running system beyond the point at which the system’s timing and performance characteristics start to get affected by the monitoring strategies. In this paper, we extend a monitoring framework developed in previous work to encompass three monitoring strategies, namely Active and Passive Periodic monitoring and Job-based monitoring. Periodic monitoring follows a given sampling rate. Active Periodic relies on periodic timer interrupts to guarantee deterministic sampling, while Passive Periodic trades determinism for a less invasive strategy, sampling data only when ordinary system events are handled. Job-based follows an event-driven monitoring that samples data whenever a job leaves the CPU, thus building isolated traces for each job. We evaluate them according to overhead, latency, and jitter, where none of them presented an average impact on the system execution time higher than <span>\\\\(0.3\\\\%\\\\)</span>. Moreover, a qualitative analysis is conducted in terms of data quality. On one hand, while Periodic monitoring allows for configurable sampling rates, it does not account for the rescheduling of jobs and may capture mixed traces. On the other hand, Job-based monitoring provides data samples tied to the execution of each job while disregarding sampling rate configuration and may lose track of instant measures.</p>\",\"PeriodicalId\":50594,\"journal\":{\"name\":\"Design Automation for Embedded Systems\",\"volume\":\"32 1\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2023-12-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Design Automation for Embedded Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s10617-023-09278-4\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Design Automation for Embedded Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s10617-023-09278-4","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

摘要

监控多核嵌入式系统的性能对于正确确保其时序要求至关重要。收集性能数据对于优化和验证工作也非常重要。然而,在此类系统中用于监控和捕获数据的策略在设计和实施上非常复杂,因为这些策略必须在系统的时序和性能特征开始受到监控策略影响时,才不会对运行中的系统造成干扰。在本文中,我们扩展了之前工作中开发的监控框架,使其包含三种监控策略,即主动和被动定期监控以及基于任务的监控。定期监控遵循给定的采样率。主动定期监控依赖于定期定时器中断来保证确定性采样,而被动定期监控则以较低的侵入性策略来换取确定性,即仅在处理普通系统事件时采样数据。基于作业的方法采用事件驱动监控,每当作业离开 CPU 时就会对数据进行采样,从而为每个作业建立独立的跟踪。我们根据开销、延迟和抖动对它们进行了评估,结果发现它们对系统执行时间的平均影响都不高于(0.3/%/)。此外,我们还对数据质量进行了定性分析。一方面,虽然周期监控允许可配置的采样率,但它没有考虑作业的重新安排,可能会捕获到混合的痕迹。另一方面,基于作业的监控可提供与每个作业执行相关的数据样本,但不考虑采样率配置,可能会丢失即时测量数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Monitoring the performance of multicore embedded systems without disrupting its timing requirements

Monitoring the performance of multicore embedded systems is crucial to properly ensure their timing requirements. Collecting performance data is also very relevant for optimization and validation efforts. However, the strategies used to monitor and capture data in such systems are complex to design and implement since they must not interfere with the running system beyond the point at which the system’s timing and performance characteristics start to get affected by the monitoring strategies. In this paper, we extend a monitoring framework developed in previous work to encompass three monitoring strategies, namely Active and Passive Periodic monitoring and Job-based monitoring. Periodic monitoring follows a given sampling rate. Active Periodic relies on periodic timer interrupts to guarantee deterministic sampling, while Passive Periodic trades determinism for a less invasive strategy, sampling data only when ordinary system events are handled. Job-based follows an event-driven monitoring that samples data whenever a job leaves the CPU, thus building isolated traces for each job. We evaluate them according to overhead, latency, and jitter, where none of them presented an average impact on the system execution time higher than \(0.3\%\). Moreover, a qualitative analysis is conducted in terms of data quality. On one hand, while Periodic monitoring allows for configurable sampling rates, it does not account for the rescheduling of jobs and may capture mixed traces. On the other hand, Job-based monitoring provides data samples tied to the execution of each job while disregarding sampling rate configuration and may lose track of instant measures.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Design Automation for Embedded Systems
Design Automation for Embedded Systems 工程技术-计算机:软件工程
CiteScore
2.60
自引率
0.00%
发文量
10
审稿时长
>12 weeks
期刊介绍: Embedded (electronic) systems have become the electronic engines of modern consumer and industrial devices, from automobiles to satellites, from washing machines to high-definition TVs, and from cellular phones to complete base stations. These embedded systems encompass a variety of hardware and software components which implement a wide range of functions including digital, analog and RF parts. Although embedded systems have been designed for decades, the systematic design of such systems with well defined methodologies, automation tools and technologies has gained attention primarily in the last decade. Advances in silicon technology and increasingly demanding applications have significantly expanded the scope and complexity of embedded systems. These systems are only now becoming possible due to advances in methodologies, tools, architectures and design techniques. Design Automation for Embedded Systems is a multidisciplinary journal which addresses the systematic design of embedded systems, focusing primarily on tools, methodologies and architectures for embedded systems, including HW/SW co-design, simulation and modeling approaches, synthesis techniques, architectures and design exploration, among others. Design Automation for Embedded Systems offers a forum for scientist and engineers to report on their latest works on algorithms, tools, architectures, case studies and real design examples related to embedded systems hardware and software. Design Automation for Embedded Systems is an innovative journal which distinguishes itself by welcoming high-quality papers on the methodology, tools, architectures and design of electronic embedded systems, leading to a true multidisciplinary system design journal.
期刊最新文献
Model predictive-based DNN control model for automated steering deployed on FPGA using an automatic IP generator tool Design and analysis of an adaptive radiation resilient RRAM subsystem for processing systems in satellites Improving edge AI for industrial IoT applications with distributed learning using consensus Profiling with trust: system monitoring from trusted execution environments Novel adaptive quantization methodology for 8-bit floating-point DNN training
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1