带硅/玻璃膜的透射光实验室芯片细胞仪,用于基于图像的猪卵母细胞变形表征

IF 2.4 4区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC Journal of Micromechanics and Microengineering Pub Date : 2023-11-28 DOI:10.1088/1361-6439/ad0d81
Aleksandra Pokrzywnicka, Danylo Lizanets, Rafał Walczak
{"title":"带硅/玻璃膜的透射光实验室芯片细胞仪,用于基于图像的猪卵母细胞变形表征","authors":"Aleksandra Pokrzywnicka, Danylo Lizanets, Rafał Walczak","doi":"10.1088/1361-6439/ad0d81","DOIUrl":null,"url":null,"abstract":"Transillumination microscopes, often with a simple lens-free optical configuration, combined with lab-on-a-chip devices are useful tools for the characterisation of various biological samples. A key issue with these devices is light transparency across a lab-on-a-chip structure. In this work we achieved this by embedding a glass window in a silicon membrane. Despite light transmission, the membrane could be pressure actuated. A second key issue is software analysis of the images due to the holographic nature of the captured images. In this paper, the technology of the silicon/glass membrane and results of porcine oocyte imaging during deformation are presented and compared with our previous micro-electro-mechanical system cytometer working with a reflective microscope. Thus, a unique device that deforms cells and allows deformation measurements with transillumination was developed.","PeriodicalId":16346,"journal":{"name":"Journal of Micromechanics and Microengineering","volume":"22 1","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2023-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Transillumination lab-on-a-chip cytometer with silicon/glass membrane for image-based porcine oocyte deformation characterisation\",\"authors\":\"Aleksandra Pokrzywnicka, Danylo Lizanets, Rafał Walczak\",\"doi\":\"10.1088/1361-6439/ad0d81\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Transillumination microscopes, often with a simple lens-free optical configuration, combined with lab-on-a-chip devices are useful tools for the characterisation of various biological samples. A key issue with these devices is light transparency across a lab-on-a-chip structure. In this work we achieved this by embedding a glass window in a silicon membrane. Despite light transmission, the membrane could be pressure actuated. A second key issue is software analysis of the images due to the holographic nature of the captured images. In this paper, the technology of the silicon/glass membrane and results of porcine oocyte imaging during deformation are presented and compared with our previous micro-electro-mechanical system cytometer working with a reflective microscope. Thus, a unique device that deforms cells and allows deformation measurements with transillumination was developed.\",\"PeriodicalId\":16346,\"journal\":{\"name\":\"Journal of Micromechanics and Microengineering\",\"volume\":\"22 1\",\"pages\":\"\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2023-11-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Micromechanics and Microengineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1088/1361-6439/ad0d81\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Micromechanics and Microengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/1361-6439/ad0d81","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

透射显微镜通常采用简单的无透镜光学配置,与片上实验室设备相结合,是表征各种生物样本的有用工具。这些设备的一个关键问题是整个片上实验室结构的光透明度。在这项工作中,我们通过在硅膜中嵌入玻璃窗实现了这一目标。尽管有透光性,但硅膜仍可被压力驱动。第二个关键问题是,由于捕捉到的图像具有全息性质,因此需要对图像进行软件分析。本文介绍了硅/玻璃膜的技术和变形过程中猪卵母细胞成像的结果,并将其与我们之前使用反射显微镜的微机电系统细胞计数器进行了比较。因此,我们开发出了一种独特的设备,既能使细胞变形,又能利用透射光测量变形。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Transillumination lab-on-a-chip cytometer with silicon/glass membrane for image-based porcine oocyte deformation characterisation
Transillumination microscopes, often with a simple lens-free optical configuration, combined with lab-on-a-chip devices are useful tools for the characterisation of various biological samples. A key issue with these devices is light transparency across a lab-on-a-chip structure. In this work we achieved this by embedding a glass window in a silicon membrane. Despite light transmission, the membrane could be pressure actuated. A second key issue is software analysis of the images due to the holographic nature of the captured images. In this paper, the technology of the silicon/glass membrane and results of porcine oocyte imaging during deformation are presented and compared with our previous micro-electro-mechanical system cytometer working with a reflective microscope. Thus, a unique device that deforms cells and allows deformation measurements with transillumination was developed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Micromechanics and Microengineering
Journal of Micromechanics and Microengineering 工程技术-材料科学:综合
CiteScore
4.50
自引率
4.30%
发文量
136
审稿时长
2.8 months
期刊介绍: Journal of Micromechanics and Microengineering (JMM) primarily covers experimental work, however relevant modelling papers are considered where supported by experimental data. The journal is focussed on all aspects of: -nano- and micro- mechanical systems -nano- and micro- electomechanical systems -nano- and micro- electrical and mechatronic systems -nano- and micro- engineering -nano- and micro- scale science Please note that we do not publish materials papers with no obvious application or link to nano- or micro-engineering. Below are some examples of the topics that are included within the scope of the journal: -MEMS and NEMS: Including sensors, optical MEMS/NEMS, RF MEMS/NEMS, etc. -Fabrication techniques and manufacturing: Including micromachining, etching, lithography, deposition, patterning, self-assembly, 3d printing, inkjet printing. -Packaging and Integration technologies. -Materials, testing, and reliability. -Micro- and nano-fluidics: Including optofluidics, acoustofluidics, droplets, microreactors, organ-on-a-chip. -Lab-on-a-chip and micro- and nano-total analysis systems. -Biomedical systems and devices: Including bio MEMS, biosensors, assays, organ-on-a-chip, drug delivery, cells, biointerfaces. -Energy and power: Including power MEMS/NEMS, energy harvesters, actuators, microbatteries. -Electronics: Including flexible electronics, wearable electronics, interface electronics. -Optical systems. -Robotics.
期刊最新文献
A highly accurate analytical method for determination of the vibrational frequency of N/MEMS with electrostatic and van der Waals interaction forces Design and performance analysis of an embedded amplified piezoelectric jetting dispensing valve Heterogeneous micro-architectonic integration of SU-8 and highly entangled polyacrylamide hydrogel to realize cut-resistant soft superhydrophobic surfaces Fabrication of ultra-low expansion glass based double paddle oscillator Electrohydrodynamic jet printed templates for hot embossing of microfluidic devices
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1