{"title":"利用软加函数构建广义线性模型及其他模型中的替代链接函数","authors":"","doi":"10.1007/s00362-023-01509-x","DOIUrl":null,"url":null,"abstract":"<h3>Abstract</h3> <p>Response functions that link regression predictors to properties of the response distribution are fundamental components in many statistical models. However, the choice of these functions is typically based on the domain of the modeled quantities and is usually not further scrutinized. For example, the exponential response function is often assumed for parameters restricted to be positive, although it implies a multiplicative model, which is not necessarily desirable or adequate. Consequently, applied researchers might face misleading results when relying on such defaults. For parameters restricted to be positive, we propose to construct alternative response functions based on the softplus function. These response functions are differentiable and correspond closely to the identity function for positive values of the regression predictor implying a quasi-additive model. Consequently, the proposed response functions allow for an additive interpretation of the estimated effects by practitioners and can be a better fit in certain data situations. We study the properties of the newly constructed response functions and demonstrate the applicability in the context of count data regression and Bayesian distributional regression. We contrast our approach to the commonly used exponential response function.</p>","PeriodicalId":51166,"journal":{"name":"Statistical Papers","volume":"50 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2023-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Using the softplus function to construct alternative link functions in generalized linear models and beyond\",\"authors\":\"\",\"doi\":\"10.1007/s00362-023-01509-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3>Abstract</h3> <p>Response functions that link regression predictors to properties of the response distribution are fundamental components in many statistical models. However, the choice of these functions is typically based on the domain of the modeled quantities and is usually not further scrutinized. For example, the exponential response function is often assumed for parameters restricted to be positive, although it implies a multiplicative model, which is not necessarily desirable or adequate. Consequently, applied researchers might face misleading results when relying on such defaults. For parameters restricted to be positive, we propose to construct alternative response functions based on the softplus function. These response functions are differentiable and correspond closely to the identity function for positive values of the regression predictor implying a quasi-additive model. Consequently, the proposed response functions allow for an additive interpretation of the estimated effects by practitioners and can be a better fit in certain data situations. We study the properties of the newly constructed response functions and demonstrate the applicability in the context of count data regression and Bayesian distributional regression. We contrast our approach to the commonly used exponential response function.</p>\",\"PeriodicalId\":51166,\"journal\":{\"name\":\"Statistical Papers\",\"volume\":\"50 1\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2023-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Statistical Papers\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00362-023-01509-x\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistical Papers","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00362-023-01509-x","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
Using the softplus function to construct alternative link functions in generalized linear models and beyond
Abstract
Response functions that link regression predictors to properties of the response distribution are fundamental components in many statistical models. However, the choice of these functions is typically based on the domain of the modeled quantities and is usually not further scrutinized. For example, the exponential response function is often assumed for parameters restricted to be positive, although it implies a multiplicative model, which is not necessarily desirable or adequate. Consequently, applied researchers might face misleading results when relying on such defaults. For parameters restricted to be positive, we propose to construct alternative response functions based on the softplus function. These response functions are differentiable and correspond closely to the identity function for positive values of the regression predictor implying a quasi-additive model. Consequently, the proposed response functions allow for an additive interpretation of the estimated effects by practitioners and can be a better fit in certain data situations. We study the properties of the newly constructed response functions and demonstrate the applicability in the context of count data regression and Bayesian distributional regression. We contrast our approach to the commonly used exponential response function.
期刊介绍:
The journal Statistical Papers addresses itself to all persons and organizations that have to deal with statistical methods in their own field of work. It attempts to provide a forum for the presentation and critical assessment of statistical methods, in particular for the discussion of their methodological foundations as well as their potential applications. Methods that have broad applications will be preferred. However, special attention is given to those statistical methods which are relevant to the economic and social sciences. In addition to original research papers, readers will find survey articles, short notes, reports on statistical software, problem section, and book reviews.