Whitney J. Richardson, Sophia B. Humphrey, Sophia M. Sears, Nicholas A. Hoffman, Andrew J. Orwick, Mark A. Doll, Chelsea L Doll, Catherine Xia, Maria Hernandez-Corbacho, Justin M. Snider, Lina M. Obeid, Yusuf A. Hannun, Ashley J. Snider, Leah J. Siskind
{"title":"小鼠神经酰胺合成酶的表达及其在调节酰基链鞘磷脂中的作用:基线水平框架及未来对衰老和疾病的影响","authors":"Whitney J. Richardson, Sophia B. Humphrey, Sophia M. Sears, Nicholas A. Hoffman, Andrew J. Orwick, Mark A. Doll, Chelsea L Doll, Catherine Xia, Maria Hernandez-Corbacho, Justin M. Snider, Lina M. Obeid, Yusuf A. Hannun, Ashley J. Snider, Leah J. Siskind","doi":"10.1124/molpharm.123.000788","DOIUrl":null,"url":null,"abstract":"Sphingolipids are an important class of lipids present in all eukaryotic cells that regulate critical cellular processes. Disturbances in sphingolipid homeostasis have been linked to several diseases in humans. Ceramides are central in sphingolipid metabolism and are largely synthesized by six ceramide synthase isoforms (CerS1-6), each with a preference for different fatty acyl chain lengths. While the tissue distribution of CerS mRNA expression in humans and the roles of CerS isoforms in synthesizing ceramides with different acyl chain lengths are known, it is unknown how CerS expression dictates ceramides and downstream metabolites within tissues. In this study, we analyzed sphingolipid levels and CerS mRNA expression in 3-month-old C57BL/6J mouse brain, heart, kidney, liver, lung, and skeletal muscle. The results showed that CerS expression and sphingolipid species abundance varied by tissue and that CerS expression was a predictor of ceramide species within tissues. Interestingly, though CerS expression was not predictive of complex sphingolipid species within all tissues, composite scores for CerSs contributions to total sphingolipids measured in each tissue correlated to CerS expression. Lastly, we determined that the most abundant ceramide species in mouse tissues aligned with CerS mRNA expression in corresponding human tissues (based on chain length preference), suggesting mice are relevant preclinical models for ceramide and sphingolipid research.","PeriodicalId":18767,"journal":{"name":"Molecular Pharmacology","volume":"25 1","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2023-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Expression of ceramide synthases in mice and their roles in regulating acyl-chain sphingolipids: A framework for baseline levels and future implications in aging and disease\",\"authors\":\"Whitney J. Richardson, Sophia B. Humphrey, Sophia M. Sears, Nicholas A. Hoffman, Andrew J. Orwick, Mark A. Doll, Chelsea L Doll, Catherine Xia, Maria Hernandez-Corbacho, Justin M. Snider, Lina M. Obeid, Yusuf A. Hannun, Ashley J. Snider, Leah J. Siskind\",\"doi\":\"10.1124/molpharm.123.000788\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Sphingolipids are an important class of lipids present in all eukaryotic cells that regulate critical cellular processes. Disturbances in sphingolipid homeostasis have been linked to several diseases in humans. Ceramides are central in sphingolipid metabolism and are largely synthesized by six ceramide synthase isoforms (CerS1-6), each with a preference for different fatty acyl chain lengths. While the tissue distribution of CerS mRNA expression in humans and the roles of CerS isoforms in synthesizing ceramides with different acyl chain lengths are known, it is unknown how CerS expression dictates ceramides and downstream metabolites within tissues. In this study, we analyzed sphingolipid levels and CerS mRNA expression in 3-month-old C57BL/6J mouse brain, heart, kidney, liver, lung, and skeletal muscle. The results showed that CerS expression and sphingolipid species abundance varied by tissue and that CerS expression was a predictor of ceramide species within tissues. Interestingly, though CerS expression was not predictive of complex sphingolipid species within all tissues, composite scores for CerSs contributions to total sphingolipids measured in each tissue correlated to CerS expression. Lastly, we determined that the most abundant ceramide species in mouse tissues aligned with CerS mRNA expression in corresponding human tissues (based on chain length preference), suggesting mice are relevant preclinical models for ceramide and sphingolipid research.\",\"PeriodicalId\":18767,\"journal\":{\"name\":\"Molecular Pharmacology\",\"volume\":\"25 1\",\"pages\":\"\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2023-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Pharmacology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1124/molpharm.123.000788\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Pharmacology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1124/molpharm.123.000788","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
Expression of ceramide synthases in mice and their roles in regulating acyl-chain sphingolipids: A framework for baseline levels and future implications in aging and disease
Sphingolipids are an important class of lipids present in all eukaryotic cells that regulate critical cellular processes. Disturbances in sphingolipid homeostasis have been linked to several diseases in humans. Ceramides are central in sphingolipid metabolism and are largely synthesized by six ceramide synthase isoforms (CerS1-6), each with a preference for different fatty acyl chain lengths. While the tissue distribution of CerS mRNA expression in humans and the roles of CerS isoforms in synthesizing ceramides with different acyl chain lengths are known, it is unknown how CerS expression dictates ceramides and downstream metabolites within tissues. In this study, we analyzed sphingolipid levels and CerS mRNA expression in 3-month-old C57BL/6J mouse brain, heart, kidney, liver, lung, and skeletal muscle. The results showed that CerS expression and sphingolipid species abundance varied by tissue and that CerS expression was a predictor of ceramide species within tissues. Interestingly, though CerS expression was not predictive of complex sphingolipid species within all tissues, composite scores for CerSs contributions to total sphingolipids measured in each tissue correlated to CerS expression. Lastly, we determined that the most abundant ceramide species in mouse tissues aligned with CerS mRNA expression in corresponding human tissues (based on chain length preference), suggesting mice are relevant preclinical models for ceramide and sphingolipid research.
期刊介绍:
Molecular Pharmacology publishes findings derived from the application of innovative structural biology, biochemistry, biophysics, physiology, genetics, and molecular biology to basic pharmacological problems that provide mechanistic insights that are broadly important for the fields of pharmacology and toxicology. Relevant topics include:
Molecular Signaling / Mechanism of Drug Action
Chemical Biology / Drug Discovery
Structure of Drug-Receptor Complex
Systems Analysis of Drug Action
Drug Transport / Metabolism