考虑到填充橡胶的非松弛性的粘弹特性表征

IF 2 4区 工程技术 Q3 ENGINEERING, CHEMICAL Advances in Polymer Technology Pub Date : 2023-12-16 DOI:10.1155/2023/1604326
Xinyi Lin, Mengxi Huang, Yang Wang, Ziran Li
{"title":"考虑到填充橡胶的非松弛性的粘弹特性表征","authors":"Xinyi Lin, Mengxi Huang, Yang Wang, Ziran Li","doi":"10.1155/2023/1604326","DOIUrl":null,"url":null,"abstract":"The influence of nonrelaxation on the Payne effect of carbon black-filled rubber is studied. The prestrain is introduced in the Kraus model in the form of exponential growth. Combined with studies of temperature correlations, an explicit model for predicting the Payne effect at different prestrains and temperatures is developed. Dynamic mechanical analyses are performed to determine model parameters and validate the proposed model. To further verify the proposed model, the heat buildup of rubber columns under dynamic tensile load is tested and simulated. The comparison between simulated and measured data shows that the simulation considering nonrelaxation is more accurate than without considering. With the increase of prestrain, the accuracy of considering nonrelaxation becomes more obvious.","PeriodicalId":7372,"journal":{"name":"Advances in Polymer Technology","volume":"80 1","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2023-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Characterization of Viscoelastic Properties Considering the Nonrelaxation for Filled Rubber\",\"authors\":\"Xinyi Lin, Mengxi Huang, Yang Wang, Ziran Li\",\"doi\":\"10.1155/2023/1604326\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The influence of nonrelaxation on the Payne effect of carbon black-filled rubber is studied. The prestrain is introduced in the Kraus model in the form of exponential growth. Combined with studies of temperature correlations, an explicit model for predicting the Payne effect at different prestrains and temperatures is developed. Dynamic mechanical analyses are performed to determine model parameters and validate the proposed model. To further verify the proposed model, the heat buildup of rubber columns under dynamic tensile load is tested and simulated. The comparison between simulated and measured data shows that the simulation considering nonrelaxation is more accurate than without considering. With the increase of prestrain, the accuracy of considering nonrelaxation becomes more obvious.\",\"PeriodicalId\":7372,\"journal\":{\"name\":\"Advances in Polymer Technology\",\"volume\":\"80 1\",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2023-12-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Polymer Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1155/2023/1604326\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Polymer Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1155/2023/1604326","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

摘要

研究了非松弛对填充炭黑的橡胶的佩恩效应的影响。在克劳斯模型中引入了指数增长形式的预应变。结合对温度相关性的研究,建立了一个明确的模型,用于预测不同预应力和温度下的佩恩效应。为确定模型参数和验证所提出的模型,进行了动态力学分析。为了进一步验证所提出的模型,还测试并模拟了橡胶柱在动态拉伸载荷下的热积聚情况。模拟数据与测量数据的比较表明,考虑非松弛的模拟比不考虑非松弛的模拟更精确。随着预应变的增加,考虑非松弛的准确性变得更加明显。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Characterization of Viscoelastic Properties Considering the Nonrelaxation for Filled Rubber
The influence of nonrelaxation on the Payne effect of carbon black-filled rubber is studied. The prestrain is introduced in the Kraus model in the form of exponential growth. Combined with studies of temperature correlations, an explicit model for predicting the Payne effect at different prestrains and temperatures is developed. Dynamic mechanical analyses are performed to determine model parameters and validate the proposed model. To further verify the proposed model, the heat buildup of rubber columns under dynamic tensile load is tested and simulated. The comparison between simulated and measured data shows that the simulation considering nonrelaxation is more accurate than without considering. With the increase of prestrain, the accuracy of considering nonrelaxation becomes more obvious.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advances in Polymer Technology
Advances in Polymer Technology 工程技术-高分子科学
CiteScore
5.50
自引率
0.00%
发文量
70
审稿时长
9 months
期刊介绍: Advances in Polymer Technology publishes articles reporting important developments in polymeric materials, their manufacture and processing, and polymer product design, as well as those considering the economic and environmental impacts of polymer technology. The journal primarily caters to researchers, technologists, engineers, consultants, and production personnel.
期刊最新文献
Utilizing Additive Manufacturing for Fabricating Energy Storage Components From Graphene-Reinforced Thermoplastic Composites Migration of Cosmetic Components Into Polyolefins Effect of Process Parameters and Material Selection on the Quality of 3D Printed Products by Fused Deposition Modeling (FDM): A Review Advances in Optimizing Mechanical Performance of 3D-Printed Polymer Composites: A Microstructural and Processing Enhancements Review Performance Study and Formulation Optimization of Rapid-Curing Local Insulating Spray Coating Materials
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1