Zostera marina(鳗草)生态系统的恢复轨迹:飓风桑迪前后新泽西州巴内加特湾的退化情况

IF 1.9 4区 生物学 Q2 MARINE & FRESHWATER BIOLOGY Aquatic Botany Pub Date : 2023-12-16 DOI:10.1016/j.aquabot.2023.103744
Edgar A. Medina, Abdullah J. Alhaddad, Adi Ackerman, Julia Kopell, Nicole Rodriguez Ortiz, Mya-Hali T. Theodore, Paul A.X. Bologna , James J. Campanella
{"title":"Zostera marina(鳗草)生态系统的恢复轨迹:飓风桑迪前后新泽西州巴内加特湾的退化情况","authors":"Edgar A. Medina,&nbsp;Abdullah J. Alhaddad,&nbsp;Adi Ackerman,&nbsp;Julia Kopell,&nbsp;Nicole Rodriguez Ortiz,&nbsp;Mya-Hali T. Theodore,&nbsp;Paul A.X. Bologna ,&nbsp;James J. Campanella","doi":"10.1016/j.aquabot.2023.103744","DOIUrl":null,"url":null,"abstract":"<div><p>In 2012, Hurricane Sandy struck Barnegat Bay, New Jersey damaging extensive beds of <span><em>Zostera marina</em></span><span><span> and causing major benthic ecosystem disruptions. Pre-Sandy genetic surveys of eelgrass populations in Barnegat Bay indicated low </span>heterozygosity and connectivity with high levels of inbreeding. After such devastation, we became concerned with the long-term fate of these populations and in previous work examined the present genetic condition of eelgrass in Barnegat Bay. Counter to our expectations, the 2021 </span><em>Z. marina</em> populations were more diverse, had greater connectivity and less inbreeding than the populations from 2008. These results further motivated us to examine the trajectory of changes between 2008 and 2021 through additional investigation of archival <em>Z. marina</em><span> samples from 2013 and 2017. This present study tracks the trajectory of Barnegat Bay eelgrass population genetics before and after Hurricane Sandy. Immediately post Sandy, populations were already more diverse with heterozygosity closer to Hardy-Weinberg Equilibrium; by 2021, two populations, Oyster Creek and Ham Island, demonstrated a surplus of heterozygotes. Similarly, in 2013 there was a three to eight-fold reduction in inbreeding observed with clear outbreeding by 2017. There was no evidence of recent bottlenecks in any population, although Oyster Creek and Ham Island populations manifested historical bottlenecks. Our evidence supports that genetic recovery was already underway a year after Sandy.</span></p></div>","PeriodicalId":8273,"journal":{"name":"Aquatic Botany","volume":"191 ","pages":"Article 103744"},"PeriodicalIF":1.9000,"publicationDate":"2023-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A trajectory of Zostera marina (eelgrass) ecosystem recovery: pre- and post-Hurricane Sandy degradation in Barnegat Bay, New Jersey\",\"authors\":\"Edgar A. Medina,&nbsp;Abdullah J. Alhaddad,&nbsp;Adi Ackerman,&nbsp;Julia Kopell,&nbsp;Nicole Rodriguez Ortiz,&nbsp;Mya-Hali T. Theodore,&nbsp;Paul A.X. Bologna ,&nbsp;James J. Campanella\",\"doi\":\"10.1016/j.aquabot.2023.103744\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In 2012, Hurricane Sandy struck Barnegat Bay, New Jersey damaging extensive beds of <span><em>Zostera marina</em></span><span><span> and causing major benthic ecosystem disruptions. Pre-Sandy genetic surveys of eelgrass populations in Barnegat Bay indicated low </span>heterozygosity and connectivity with high levels of inbreeding. After such devastation, we became concerned with the long-term fate of these populations and in previous work examined the present genetic condition of eelgrass in Barnegat Bay. Counter to our expectations, the 2021 </span><em>Z. marina</em> populations were more diverse, had greater connectivity and less inbreeding than the populations from 2008. These results further motivated us to examine the trajectory of changes between 2008 and 2021 through additional investigation of archival <em>Z. marina</em><span> samples from 2013 and 2017. This present study tracks the trajectory of Barnegat Bay eelgrass population genetics before and after Hurricane Sandy. Immediately post Sandy, populations were already more diverse with heterozygosity closer to Hardy-Weinberg Equilibrium; by 2021, two populations, Oyster Creek and Ham Island, demonstrated a surplus of heterozygotes. Similarly, in 2013 there was a three to eight-fold reduction in inbreeding observed with clear outbreeding by 2017. There was no evidence of recent bottlenecks in any population, although Oyster Creek and Ham Island populations manifested historical bottlenecks. Our evidence supports that genetic recovery was already underway a year after Sandy.</span></p></div>\",\"PeriodicalId\":8273,\"journal\":{\"name\":\"Aquatic Botany\",\"volume\":\"191 \",\"pages\":\"Article 103744\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2023-12-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Aquatic Botany\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0304377023001298\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MARINE & FRESHWATER BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aquatic Botany","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304377023001298","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MARINE & FRESHWATER BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

2012 年,飓风桑迪袭击了新泽西州的巴内加特湾,破坏了大面积的 Zostera marina 藻床,造成底栖生态系统严重破坏。桑迪飓风前对巴内加特湾的鳗草种群进行的遗传调查显示,该种群的杂合度和连通性较低,近亲繁殖程度较高。在遭受这样的破坏后,我们开始关注这些种群的长期命运,并在之前的工作中研究了巴内加特湾黄鳝草的遗传现状。与我们的预期相反,与 2008 年的种群相比,2021 年的 Z. marina 种群更加多样化,连通性更高,近亲繁殖更少。这些结果进一步促使我们通过对 2013 年和 2017 年的 Z. marina 档案样本进行更多调查,来研究 2008 年至 2021 年间的变化轨迹。本研究跟踪了桑迪飓风前后巴内加特湾鳗草种群遗传学的变化轨迹。桑迪飓风过后,种群已经更加多样化,杂合度更接近哈代-温伯格平衡;到 2021 年,牡蛎溪和火腿岛这两个种群显示出杂合度过剩。同样,2013 年观察到的近亲繁殖减少了 3 到 8 倍,到 2017 年,近亲繁殖明显减少。尽管牡蛎溪和火腿岛种群表现出历史性瓶颈,但没有证据表明任何种群最近出现了瓶颈。我们的证据表明,桑迪一年后,遗传恢复已经开始。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A trajectory of Zostera marina (eelgrass) ecosystem recovery: pre- and post-Hurricane Sandy degradation in Barnegat Bay, New Jersey

In 2012, Hurricane Sandy struck Barnegat Bay, New Jersey damaging extensive beds of Zostera marina and causing major benthic ecosystem disruptions. Pre-Sandy genetic surveys of eelgrass populations in Barnegat Bay indicated low heterozygosity and connectivity with high levels of inbreeding. After such devastation, we became concerned with the long-term fate of these populations and in previous work examined the present genetic condition of eelgrass in Barnegat Bay. Counter to our expectations, the 2021 Z. marina populations were more diverse, had greater connectivity and less inbreeding than the populations from 2008. These results further motivated us to examine the trajectory of changes between 2008 and 2021 through additional investigation of archival Z. marina samples from 2013 and 2017. This present study tracks the trajectory of Barnegat Bay eelgrass population genetics before and after Hurricane Sandy. Immediately post Sandy, populations were already more diverse with heterozygosity closer to Hardy-Weinberg Equilibrium; by 2021, two populations, Oyster Creek and Ham Island, demonstrated a surplus of heterozygotes. Similarly, in 2013 there was a three to eight-fold reduction in inbreeding observed with clear outbreeding by 2017. There was no evidence of recent bottlenecks in any population, although Oyster Creek and Ham Island populations manifested historical bottlenecks. Our evidence supports that genetic recovery was already underway a year after Sandy.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Aquatic Botany
Aquatic Botany 生物-海洋与淡水生物学
CiteScore
3.80
自引率
5.60%
发文量
70
审稿时长
6 months
期刊介绍: Aquatic Botany offers a platform for papers relevant to a broad international readership on fundamental and applied aspects of marine and freshwater macroscopic plants in a context of ecology or environmental biology. This includes molecular, biochemical and physiological aspects of macroscopic aquatic plants as well as the classification, structure, function, dynamics and ecological interactions in plant-dominated aquatic communities and ecosystems. It is an outlet for papers dealing with research on the consequences of disturbance and stressors (e.g. environmental fluctuations and climate change, pollution, grazing and pathogens), use and management of aquatic plants (plant production and decomposition, commercial harvest, plant control) and the conservation of aquatic plant communities (breeding, transplantation and restoration). Specialized publications on certain rare taxa or papers on aquatic macroscopic plants from under-represented regions in the world can also find their place, subject to editor evaluation. Studies on fungi or microalgae will remain outside the scope of Aquatic Botany.
期刊最新文献
Within-lake isolation and reproductive strategy of Stuckenia pectinata (L.) Börner at Lake Naivasha (Kenya): About water level fluctuations and alien species Effects of rainwater on the carrageenan yield and quality and dry yield biomass of eucheumatoid seaweed Kappaphycus alvarezii A living fossil charophyte Lychnothamnus barbatus newly found in southern Siberia (North Asia) Fragment viability, regenerative capacity and protoplast isolation of invasive Australian swamp stonecrop (Crassula helmsii) Intra and inter specific variation of propagule settings of the family Rhizophoraceae in the Sundarbans mangrove forest
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1