{"title":"损失引导的稳定性选择","authors":"Tino Werner","doi":"10.1007/s11634-023-00573-3","DOIUrl":null,"url":null,"abstract":"<p>In modern data analysis, sparse model selection becomes inevitable once the number of predictor variables is very high. It is well-known that model selection procedures like the Lasso or Boosting tend to overfit on real data. The celebrated Stability Selection overcomes these weaknesses by aggregating models, based on subsamples of the training data, followed by choosing a stable predictor set which is usually much sparser than the predictor sets from the raw models. The standard Stability Selection is based on a global criterion, namely the per-family error rate, while additionally requiring expert knowledge to suitably configure the hyperparameters. Model selection depends on the loss function, i.e., predictor sets selected w.r.t. some particular loss function differ from those selected w.r.t. some other loss function. Therefore, we propose a Stability Selection variant which respects the chosen loss function via an additional validation step based on out-of-sample validation data, optionally enhanced with an exhaustive search strategy. Our Stability Selection variants are widely applicable and user-friendly. Moreover, our Stability Selection variants can avoid the issue of severe underfitting, which affects the original Stability Selection for noisy high-dimensional data, so our priority is not to avoid false positives at all costs but to result in a sparse stable model with which one can make predictions. Experiments where we consider both regression and binary classification with Boosting as model selection algorithm reveal a significant precision improvement compared to raw Boosting models while not suffering from any of the mentioned issues of the original Stability Selection.</p>","PeriodicalId":49270,"journal":{"name":"Advances in Data Analysis and Classification","volume":"199 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2023-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Loss-guided stability selection\",\"authors\":\"Tino Werner\",\"doi\":\"10.1007/s11634-023-00573-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In modern data analysis, sparse model selection becomes inevitable once the number of predictor variables is very high. It is well-known that model selection procedures like the Lasso or Boosting tend to overfit on real data. The celebrated Stability Selection overcomes these weaknesses by aggregating models, based on subsamples of the training data, followed by choosing a stable predictor set which is usually much sparser than the predictor sets from the raw models. The standard Stability Selection is based on a global criterion, namely the per-family error rate, while additionally requiring expert knowledge to suitably configure the hyperparameters. Model selection depends on the loss function, i.e., predictor sets selected w.r.t. some particular loss function differ from those selected w.r.t. some other loss function. Therefore, we propose a Stability Selection variant which respects the chosen loss function via an additional validation step based on out-of-sample validation data, optionally enhanced with an exhaustive search strategy. Our Stability Selection variants are widely applicable and user-friendly. Moreover, our Stability Selection variants can avoid the issue of severe underfitting, which affects the original Stability Selection for noisy high-dimensional data, so our priority is not to avoid false positives at all costs but to result in a sparse stable model with which one can make predictions. Experiments where we consider both regression and binary classification with Boosting as model selection algorithm reveal a significant precision improvement compared to raw Boosting models while not suffering from any of the mentioned issues of the original Stability Selection.</p>\",\"PeriodicalId\":49270,\"journal\":{\"name\":\"Advances in Data Analysis and Classification\",\"volume\":\"199 1\",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2023-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Data Analysis and Classification\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s11634-023-00573-3\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Data Analysis and Classification","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s11634-023-00573-3","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
In modern data analysis, sparse model selection becomes inevitable once the number of predictor variables is very high. It is well-known that model selection procedures like the Lasso or Boosting tend to overfit on real data. The celebrated Stability Selection overcomes these weaknesses by aggregating models, based on subsamples of the training data, followed by choosing a stable predictor set which is usually much sparser than the predictor sets from the raw models. The standard Stability Selection is based on a global criterion, namely the per-family error rate, while additionally requiring expert knowledge to suitably configure the hyperparameters. Model selection depends on the loss function, i.e., predictor sets selected w.r.t. some particular loss function differ from those selected w.r.t. some other loss function. Therefore, we propose a Stability Selection variant which respects the chosen loss function via an additional validation step based on out-of-sample validation data, optionally enhanced with an exhaustive search strategy. Our Stability Selection variants are widely applicable and user-friendly. Moreover, our Stability Selection variants can avoid the issue of severe underfitting, which affects the original Stability Selection for noisy high-dimensional data, so our priority is not to avoid false positives at all costs but to result in a sparse stable model with which one can make predictions. Experiments where we consider both regression and binary classification with Boosting as model selection algorithm reveal a significant precision improvement compared to raw Boosting models while not suffering from any of the mentioned issues of the original Stability Selection.
期刊介绍:
The international journal Advances in Data Analysis and Classification (ADAC) is designed as a forum for high standard publications on research and applications concerning the extraction of knowable aspects from many types of data. It publishes articles on such topics as structural, quantitative, or statistical approaches for the analysis of data; advances in classification, clustering, and pattern recognition methods; strategies for modeling complex data and mining large data sets; methods for the extraction of knowledge from data, and applications of advanced methods in specific domains of practice. Articles illustrate how new domain-specific knowledge can be made available from data by skillful use of data analysis methods. The journal also publishes survey papers that outline, and illuminate the basic ideas and techniques of special approaches.