{"title":"小鼠卵泡发育过程中卵母细胞中脂滴的形成受时空调控","authors":"Ryutaro AIZAWA, Megumi IBAYASHI, Junichiro MITSUI, Satoshi TSUKAMOTO","doi":"10.1262/jrd.2023-055","DOIUrl":null,"url":null,"abstract":"</p><p>Communication between oocytes and the surrounding granulosa cells during follicular development is essential for complete oocyte growth. Oocytes contain lipid droplets (LDs), organelles assembled in the endoplasmic reticulum (ER) that store neutral lipids, including triglycerides and cholesterol esters. Although the LD content varies among animals, LDs stored in oocytes have been shown to play an important role in oocyte maturation and preimplantation embryonic development. However, knowledge is lacking regarding how and when LDs are initially produced in developing oocytes within follicles. In the present study, we found that LDs appeared in mouse oocytes in a specific phase during follicular development. The emergence of LDs in intrafollicular oocytes was induced within a similar time window <i>in vitro</i> and <i>in vivo</i>. Fluorescence imaging and electron microscopy revealed that LDs emerging in oocytes during the early stages of follicular growth were in close proximity to the ER. Furthermore, fatty-acid-tracking experiments have revealed that exogenous fatty acids are rapidly incorporated into oocytes, and their uptake is regulated by the interaction between oocytes and granulosa cells, likely in part through transzonal projections. In summary, our results suggest that LD synthesis observed in growing oocytes is spatiotemporally regulated and that oocyte–granulosa cell contact may be involved in LD biosynthesis during follicular development.</p>\n<p></p>\n<img alt=\"\" src=\"https://www.jstage.jst.go.jp/pub/jrd/advpub/0/advpub_2023-055/figure/advpub_2023-055.jpg\"/>\nGraphical Abstract <span style=\"padding-left:5px;\">Fullsize Image</span>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Lipid droplet formation is spatiotemporally regulated in oocytes during follicular development in mice\",\"authors\":\"Ryutaro AIZAWA, Megumi IBAYASHI, Junichiro MITSUI, Satoshi TSUKAMOTO\",\"doi\":\"10.1262/jrd.2023-055\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"</p><p>Communication between oocytes and the surrounding granulosa cells during follicular development is essential for complete oocyte growth. Oocytes contain lipid droplets (LDs), organelles assembled in the endoplasmic reticulum (ER) that store neutral lipids, including triglycerides and cholesterol esters. Although the LD content varies among animals, LDs stored in oocytes have been shown to play an important role in oocyte maturation and preimplantation embryonic development. However, knowledge is lacking regarding how and when LDs are initially produced in developing oocytes within follicles. In the present study, we found that LDs appeared in mouse oocytes in a specific phase during follicular development. The emergence of LDs in intrafollicular oocytes was induced within a similar time window <i>in vitro</i> and <i>in vivo</i>. Fluorescence imaging and electron microscopy revealed that LDs emerging in oocytes during the early stages of follicular growth were in close proximity to the ER. Furthermore, fatty-acid-tracking experiments have revealed that exogenous fatty acids are rapidly incorporated into oocytes, and their uptake is regulated by the interaction between oocytes and granulosa cells, likely in part through transzonal projections. In summary, our results suggest that LD synthesis observed in growing oocytes is spatiotemporally regulated and that oocyte–granulosa cell contact may be involved in LD biosynthesis during follicular development.</p>\\n<p></p>\\n<img alt=\\\"\\\" src=\\\"https://www.jstage.jst.go.jp/pub/jrd/advpub/0/advpub_2023-055/figure/advpub_2023-055.jpg\\\"/>\\nGraphical Abstract <span style=\\\"padding-left:5px;\\\">Fullsize Image</span>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-12-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1262/jrd.2023-055\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1262/jrd.2023-055","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Lipid droplet formation is spatiotemporally regulated in oocytes during follicular development in mice
Communication between oocytes and the surrounding granulosa cells during follicular development is essential for complete oocyte growth. Oocytes contain lipid droplets (LDs), organelles assembled in the endoplasmic reticulum (ER) that store neutral lipids, including triglycerides and cholesterol esters. Although the LD content varies among animals, LDs stored in oocytes have been shown to play an important role in oocyte maturation and preimplantation embryonic development. However, knowledge is lacking regarding how and when LDs are initially produced in developing oocytes within follicles. In the present study, we found that LDs appeared in mouse oocytes in a specific phase during follicular development. The emergence of LDs in intrafollicular oocytes was induced within a similar time window in vitro and in vivo. Fluorescence imaging and electron microscopy revealed that LDs emerging in oocytes during the early stages of follicular growth were in close proximity to the ER. Furthermore, fatty-acid-tracking experiments have revealed that exogenous fatty acids are rapidly incorporated into oocytes, and their uptake is regulated by the interaction between oocytes and granulosa cells, likely in part through transzonal projections. In summary, our results suggest that LD synthesis observed in growing oocytes is spatiotemporally regulated and that oocyte–granulosa cell contact may be involved in LD biosynthesis during follicular development.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.