数字双轴应用的符号多体模型

IF 2.6 2区 工程技术 Q2 MECHANICS Multibody System Dynamics Pub Date : 2023-12-18 DOI:10.1007/s11044-023-09957-x
Nicolas Docquier, Krzysztof Lipinski, Olivier Lantsoght, Sebastien Timmermans, Paul Fisette
{"title":"数字双轴应用的符号多体模型","authors":"Nicolas Docquier, Krzysztof Lipinski, Olivier Lantsoght, Sebastien Timmermans, Paul Fisette","doi":"10.1007/s11044-023-09957-x","DOIUrl":null,"url":null,"abstract":"<p>Symbolic generation of multibody systems equations of motion appeared in the 1980s. In addition to their computational advantage over their numerical counterparts, symbolic models can be very easily and straightforwardly interfaced with a wide range of software environments and hardware devices. These two features place this approach in a pole position to participate and intervene in the design of digital twins for systems such as vehicles, manipulators, walking robots or haptic devices.</p><p>In this context, the first goal of this paper is to highlight the interest of symbolically generated multibody models – at the root of the ROBOTRAN program – in the form of a standalone set of equations calculating the dynamic model of multibody systems, for use as a computational component within a Digital-Twin-type process. The next goal is to embed realistic and complex multibody models within processes or devices whose functioning requires a synchronized real-time computation – or analysis – of their motion.</p><p>An implementation (i) on specific hardware and (ii) on two extremely opposite but revealing applications (namely a railway vehicle and a digital piano) are presented to highlight the usefulness of symbolic models for the development of current and future multibody-based digital twins.</p>","PeriodicalId":49792,"journal":{"name":"Multibody System Dynamics","volume":"241 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2023-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Symbolic multibody models for digital-twin applications\",\"authors\":\"Nicolas Docquier, Krzysztof Lipinski, Olivier Lantsoght, Sebastien Timmermans, Paul Fisette\",\"doi\":\"10.1007/s11044-023-09957-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Symbolic generation of multibody systems equations of motion appeared in the 1980s. In addition to their computational advantage over their numerical counterparts, symbolic models can be very easily and straightforwardly interfaced with a wide range of software environments and hardware devices. These two features place this approach in a pole position to participate and intervene in the design of digital twins for systems such as vehicles, manipulators, walking robots or haptic devices.</p><p>In this context, the first goal of this paper is to highlight the interest of symbolically generated multibody models – at the root of the ROBOTRAN program – in the form of a standalone set of equations calculating the dynamic model of multibody systems, for use as a computational component within a Digital-Twin-type process. The next goal is to embed realistic and complex multibody models within processes or devices whose functioning requires a synchronized real-time computation – or analysis – of their motion.</p><p>An implementation (i) on specific hardware and (ii) on two extremely opposite but revealing applications (namely a railway vehicle and a digital piano) are presented to highlight the usefulness of symbolic models for the development of current and future multibody-based digital twins.</p>\",\"PeriodicalId\":49792,\"journal\":{\"name\":\"Multibody System Dynamics\",\"volume\":\"241 1\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2023-12-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Multibody System Dynamics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s11044-023-09957-x\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Multibody System Dynamics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11044-023-09957-x","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

摘要

多体系统运动方程的符号生成出现于 20 世纪 80 年代。与数字模型相比,符号模型除了在计算方面具有优势外,还可以非常简单直接地与各种软件环境和硬件设备连接。在此背景下,本文的第一个目标是强调符号生成的多体模型(ROBOTRAN 程序的根基)的重要性,该模型是计算多体系统动态模型的独立方程组,可用作数字孪生程序中的计算组件。下一个目标是将现实而复杂的多体模型嵌入到需要对其运动进行同步实时计算或分析的过程或设备中。本文介绍了(i)在特定硬件上的实施和(ii)在两个截然相反但却很有启发性的应用(即铁路车辆和数码钢琴)上的实施,以突出符号模型在当前和未来基于多体的数字孪生系统开发中的实用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Symbolic multibody models for digital-twin applications

Symbolic generation of multibody systems equations of motion appeared in the 1980s. In addition to their computational advantage over their numerical counterparts, symbolic models can be very easily and straightforwardly interfaced with a wide range of software environments and hardware devices. These two features place this approach in a pole position to participate and intervene in the design of digital twins for systems such as vehicles, manipulators, walking robots or haptic devices.

In this context, the first goal of this paper is to highlight the interest of symbolically generated multibody models – at the root of the ROBOTRAN program – in the form of a standalone set of equations calculating the dynamic model of multibody systems, for use as a computational component within a Digital-Twin-type process. The next goal is to embed realistic and complex multibody models within processes or devices whose functioning requires a synchronized real-time computation – or analysis – of their motion.

An implementation (i) on specific hardware and (ii) on two extremely opposite but revealing applications (namely a railway vehicle and a digital piano) are presented to highlight the usefulness of symbolic models for the development of current and future multibody-based digital twins.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.00
自引率
17.60%
发文量
46
审稿时长
12 months
期刊介绍: The journal Multibody System Dynamics treats theoretical and computational methods in rigid and flexible multibody systems, their application, and the experimental procedures used to validate the theoretical foundations. The research reported addresses computational and experimental aspects and their application to classical and emerging fields in science and technology. Both development and application aspects of multibody dynamics are relevant, in particular in the fields of control, optimization, real-time simulation, parallel computation, workspace and path planning, reliability, and durability. The journal also publishes articles covering application fields such as vehicle dynamics, aerospace technology, robotics and mechatronics, machine dynamics, crashworthiness, biomechanics, artificial intelligence, and system identification if they involve or contribute to the field of Multibody System Dynamics.
期刊最新文献
Development of an identification method for the minimal set of inertial parameters of a multibody system Vibration transmission through the seated human body captured with a computationally efficient multibody model Data-driven inverse dynamics modeling using neural-networks and regression-based techniques Load torque estimation for cable failure detection in cable-driven parallel robots: a machine learning approach Mutual information-based feature selection for inverse mapping parameter updating of dynamical systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1