{"title":"局部正相关条件下 LORD++ 和 SAFFRON 的在线错误发现率控制","authors":"Aaron Fisher","doi":"10.1002/bimj.202300177","DOIUrl":null,"url":null,"abstract":"<p>Online testing procedures assume that hypotheses are observed in sequence, and allow the significance thresholds for upcoming tests to depend on the test statistics observed so far. Some of the most popular online methods include alpha investing, LORD++, and SAFFRON. These three methods have been shown to provide online control of the “modified” false discovery rate (mFDR) under a condition known as CS. However, to our knowledge, LORD++ and SAFFRON have only been shown to control the traditional false discovery rate (FDR) under an independence condition on the test statistics. Our work bolsters these results by showing that SAFFRON and LORD++ additionally ensure online control of the FDR under a “local” form of nonnegative dependence. Further, FDR control is maintained under certain types of adaptive stopping rules, such as stopping after a certain number of rejections have been observed. Because alpha investing can be recovered as a special case of the SAFFRON framework, our results immediately apply to alpha investing as well. In the process of deriving these results, we also formally characterize how the conditional super-uniformity assumption implicitly limits the allowed <i>p</i>-value dependencies. This implicit limitation is important not only to our proposed FDR result, but also to many existing mFDR results.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Online false discovery rate control for LORD++ and SAFFRON under positive, local dependence\",\"authors\":\"Aaron Fisher\",\"doi\":\"10.1002/bimj.202300177\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Online testing procedures assume that hypotheses are observed in sequence, and allow the significance thresholds for upcoming tests to depend on the test statistics observed so far. Some of the most popular online methods include alpha investing, LORD++, and SAFFRON. These three methods have been shown to provide online control of the “modified” false discovery rate (mFDR) under a condition known as CS. However, to our knowledge, LORD++ and SAFFRON have only been shown to control the traditional false discovery rate (FDR) under an independence condition on the test statistics. Our work bolsters these results by showing that SAFFRON and LORD++ additionally ensure online control of the FDR under a “local” form of nonnegative dependence. Further, FDR control is maintained under certain types of adaptive stopping rules, such as stopping after a certain number of rejections have been observed. Because alpha investing can be recovered as a special case of the SAFFRON framework, our results immediately apply to alpha investing as well. In the process of deriving these results, we also formally characterize how the conditional super-uniformity assumption implicitly limits the allowed <i>p</i>-value dependencies. This implicit limitation is important not only to our proposed FDR result, but also to many existing mFDR results.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-12-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/bimj.202300177\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/bimj.202300177","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Online false discovery rate control for LORD++ and SAFFRON under positive, local dependence
Online testing procedures assume that hypotheses are observed in sequence, and allow the significance thresholds for upcoming tests to depend on the test statistics observed so far. Some of the most popular online methods include alpha investing, LORD++, and SAFFRON. These three methods have been shown to provide online control of the “modified” false discovery rate (mFDR) under a condition known as CS. However, to our knowledge, LORD++ and SAFFRON have only been shown to control the traditional false discovery rate (FDR) under an independence condition on the test statistics. Our work bolsters these results by showing that SAFFRON and LORD++ additionally ensure online control of the FDR under a “local” form of nonnegative dependence. Further, FDR control is maintained under certain types of adaptive stopping rules, such as stopping after a certain number of rejections have been observed. Because alpha investing can be recovered as a special case of the SAFFRON framework, our results immediately apply to alpha investing as well. In the process of deriving these results, we also formally characterize how the conditional super-uniformity assumption implicitly limits the allowed p-value dependencies. This implicit limitation is important not only to our proposed FDR result, but also to many existing mFDR results.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.