{"title":"模拟治疗比较的四种替代方法:如何重新激活模拟的使用?","authors":"Landan Zhang, Sylwia Bujkiewicz, Dan Jackson","doi":"10.1002/jrsm.1681","DOIUrl":null,"url":null,"abstract":"<p>Simulated treatment comparison (STC) is an established method for performing population adjustment for the indirect comparison of two treatments, where individual patient data (IPD) are available for one trial but only aggregate level information is available for the other. The most commonly used method is what we call ‘standard STC’. Here we fit an outcome model using data from the trial with IPD, and then substitute mean covariate values from the trial where only aggregate level data are available, to predict what the first of these trial's outcomes would have been if its population had been the same as the second. However, this type of STC methodology does not involve simulation and can result in bias when the link function used in the outcome model is non-linear. An alternative approach is to use the fitted outcome model to simulate patient profiles in the trial for which IPD are available, but in the other trial's population. This stochastic alternative presents additional challenges. We examine the history of STC and propose two new simulation-based methods that resolve many of the difficulties associated with the current stochastic approach. A virtue of the simulation-based STC methods is that the marginal estimands are then clearly targeted. We illustrate all methods using a numerical example and explore their use in a simulation study.</p>","PeriodicalId":226,"journal":{"name":"Research Synthesis Methods","volume":"15 2","pages":"227-241"},"PeriodicalIF":5.0000,"publicationDate":"2023-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Four alternative methodologies for simulated treatment comparison: How could the use of simulation be re-invigorated?\",\"authors\":\"Landan Zhang, Sylwia Bujkiewicz, Dan Jackson\",\"doi\":\"10.1002/jrsm.1681\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Simulated treatment comparison (STC) is an established method for performing population adjustment for the indirect comparison of two treatments, where individual patient data (IPD) are available for one trial but only aggregate level information is available for the other. The most commonly used method is what we call ‘standard STC’. Here we fit an outcome model using data from the trial with IPD, and then substitute mean covariate values from the trial where only aggregate level data are available, to predict what the first of these trial's outcomes would have been if its population had been the same as the second. However, this type of STC methodology does not involve simulation and can result in bias when the link function used in the outcome model is non-linear. An alternative approach is to use the fitted outcome model to simulate patient profiles in the trial for which IPD are available, but in the other trial's population. This stochastic alternative presents additional challenges. We examine the history of STC and propose two new simulation-based methods that resolve many of the difficulties associated with the current stochastic approach. A virtue of the simulation-based STC methods is that the marginal estimands are then clearly targeted. We illustrate all methods using a numerical example and explore their use in a simulation study.</p>\",\"PeriodicalId\":226,\"journal\":{\"name\":\"Research Synthesis Methods\",\"volume\":\"15 2\",\"pages\":\"227-241\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2023-12-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Research Synthesis Methods\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jrsm.1681\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research Synthesis Methods","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jrsm.1681","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
Four alternative methodologies for simulated treatment comparison: How could the use of simulation be re-invigorated?
Simulated treatment comparison (STC) is an established method for performing population adjustment for the indirect comparison of two treatments, where individual patient data (IPD) are available for one trial but only aggregate level information is available for the other. The most commonly used method is what we call ‘standard STC’. Here we fit an outcome model using data from the trial with IPD, and then substitute mean covariate values from the trial where only aggregate level data are available, to predict what the first of these trial's outcomes would have been if its population had been the same as the second. However, this type of STC methodology does not involve simulation and can result in bias when the link function used in the outcome model is non-linear. An alternative approach is to use the fitted outcome model to simulate patient profiles in the trial for which IPD are available, but in the other trial's population. This stochastic alternative presents additional challenges. We examine the history of STC and propose two new simulation-based methods that resolve many of the difficulties associated with the current stochastic approach. A virtue of the simulation-based STC methods is that the marginal estimands are then clearly targeted. We illustrate all methods using a numerical example and explore their use in a simulation study.
期刊介绍:
Research Synthesis Methods is a reputable, peer-reviewed journal that focuses on the development and dissemination of methods for conducting systematic research synthesis. Our aim is to advance the knowledge and application of research synthesis methods across various disciplines.
Our journal provides a platform for the exchange of ideas and knowledge related to designing, conducting, analyzing, interpreting, reporting, and applying research synthesis. While research synthesis is commonly practiced in the health and social sciences, our journal also welcomes contributions from other fields to enrich the methodologies employed in research synthesis across scientific disciplines.
By bridging different disciplines, we aim to foster collaboration and cross-fertilization of ideas, ultimately enhancing the quality and effectiveness of research synthesis methods. Whether you are a researcher, practitioner, or stakeholder involved in research synthesis, our journal strives to offer valuable insights and practical guidance for your work.