{"title":"316L/430 异种不锈钢焊缝的冷金属转移焊接","authors":"Chetan Tembhurkar, Sachin Ambade, Ravinder Kataria, Jagesvar Verma, Abhijeet Moon","doi":"10.1108/acmm-03-2023-2774","DOIUrl":null,"url":null,"abstract":"<h3>Purpose</h3>\n<p>This paper aims to examine dissimilar joints for various applications in chemical, petrochemical, oil, gas, shipbuilding, defense, rail and nuclear industry.</p><!--/ Abstract__block -->\n<h3>Design/methodology/approach</h3>\n<p>This study examined the effects of cold metal transfer welding on stainless steel welds for 316L austenitic and 430 ferritic dissimilar welds with ER316L, ER309L and without (autogenous) fillers. The microstructural observation was done with an optical microscope. The mechanical test was done to reveal the strength, hardness and toughness of the joint. The electrochemical polarization tests were done to reveal intergranular and pitting corrosion in the dissimilar joints.</p><!--/ Abstract__block -->\n<h3>Findings</h3>\n<p>This microstructural study shows the presence of austenitic and ferritic phases with vermicular ferrite for ER309L filler weld, and for ER316L filler weld specimen shows predominately martensitic phase in the weld region, whereas the autogenous weld shows lathy ferrite mixed with martensitic phase. Mechanical test results indicated that filler welded specimen (ER316L and ER309L) has relatively higher strength and hardness than the autogenous weld, whereas ER316L filler weld exhibited the highest impact toughness than ER309L filler weld and lowest in autogenous weld. The electrochemical corrosion results displayed the highest degree of sensitization (DOS) in without filler welded specimen (45.62%) and lower in case of filler welded specimen ER309L (4.95%) and least in case of ER316L filler welded specimen (3.51%). The high DOS in non-filler welded specimen is correlated with the chromium carbide formation. The non-filler welded specimen shows the highest pitting corrosion attack as compared to the ER316L filler weld specimen and relatively better in ER309L filler welded specimen. The highest pitting corrosion resistance is related with the high chromium content in ER309L composition.</p><!--/ Abstract__block -->\n<h3>Originality/value</h3>\n<p>This experimental study is original and conducted with 316L and 430 stainless steel with ER316L, ER309 and without fillers, which will help the oil, shipbuilding and chemical industries.</p><!--/ Abstract__block -->","PeriodicalId":8217,"journal":{"name":"Anti-corrosion Methods and Materials","volume":"28 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2023-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cold metal transfer welding of 316L/430 dissimilar stainless-steel welds\",\"authors\":\"Chetan Tembhurkar, Sachin Ambade, Ravinder Kataria, Jagesvar Verma, Abhijeet Moon\",\"doi\":\"10.1108/acmm-03-2023-2774\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3>Purpose</h3>\\n<p>This paper aims to examine dissimilar joints for various applications in chemical, petrochemical, oil, gas, shipbuilding, defense, rail and nuclear industry.</p><!--/ Abstract__block -->\\n<h3>Design/methodology/approach</h3>\\n<p>This study examined the effects of cold metal transfer welding on stainless steel welds for 316L austenitic and 430 ferritic dissimilar welds with ER316L, ER309L and without (autogenous) fillers. The microstructural observation was done with an optical microscope. The mechanical test was done to reveal the strength, hardness and toughness of the joint. The electrochemical polarization tests were done to reveal intergranular and pitting corrosion in the dissimilar joints.</p><!--/ Abstract__block -->\\n<h3>Findings</h3>\\n<p>This microstructural study shows the presence of austenitic and ferritic phases with vermicular ferrite for ER309L filler weld, and for ER316L filler weld specimen shows predominately martensitic phase in the weld region, whereas the autogenous weld shows lathy ferrite mixed with martensitic phase. Mechanical test results indicated that filler welded specimen (ER316L and ER309L) has relatively higher strength and hardness than the autogenous weld, whereas ER316L filler weld exhibited the highest impact toughness than ER309L filler weld and lowest in autogenous weld. The electrochemical corrosion results displayed the highest degree of sensitization (DOS) in without filler welded specimen (45.62%) and lower in case of filler welded specimen ER309L (4.95%) and least in case of ER316L filler welded specimen (3.51%). The high DOS in non-filler welded specimen is correlated with the chromium carbide formation. The non-filler welded specimen shows the highest pitting corrosion attack as compared to the ER316L filler weld specimen and relatively better in ER309L filler welded specimen. The highest pitting corrosion resistance is related with the high chromium content in ER309L composition.</p><!--/ Abstract__block -->\\n<h3>Originality/value</h3>\\n<p>This experimental study is original and conducted with 316L and 430 stainless steel with ER316L, ER309 and without fillers, which will help the oil, shipbuilding and chemical industries.</p><!--/ Abstract__block -->\",\"PeriodicalId\":8217,\"journal\":{\"name\":\"Anti-corrosion Methods and Materials\",\"volume\":\"28 1\",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2023-12-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Anti-corrosion Methods and Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1108/acmm-03-2023-2774\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"METALLURGY & METALLURGICAL ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anti-corrosion Methods and Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1108/acmm-03-2023-2774","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
Cold metal transfer welding of 316L/430 dissimilar stainless-steel welds
Purpose
This paper aims to examine dissimilar joints for various applications in chemical, petrochemical, oil, gas, shipbuilding, defense, rail and nuclear industry.
Design/methodology/approach
This study examined the effects of cold metal transfer welding on stainless steel welds for 316L austenitic and 430 ferritic dissimilar welds with ER316L, ER309L and without (autogenous) fillers. The microstructural observation was done with an optical microscope. The mechanical test was done to reveal the strength, hardness and toughness of the joint. The electrochemical polarization tests were done to reveal intergranular and pitting corrosion in the dissimilar joints.
Findings
This microstructural study shows the presence of austenitic and ferritic phases with vermicular ferrite for ER309L filler weld, and for ER316L filler weld specimen shows predominately martensitic phase in the weld region, whereas the autogenous weld shows lathy ferrite mixed with martensitic phase. Mechanical test results indicated that filler welded specimen (ER316L and ER309L) has relatively higher strength and hardness than the autogenous weld, whereas ER316L filler weld exhibited the highest impact toughness than ER309L filler weld and lowest in autogenous weld. The electrochemical corrosion results displayed the highest degree of sensitization (DOS) in without filler welded specimen (45.62%) and lower in case of filler welded specimen ER309L (4.95%) and least in case of ER316L filler welded specimen (3.51%). The high DOS in non-filler welded specimen is correlated with the chromium carbide formation. The non-filler welded specimen shows the highest pitting corrosion attack as compared to the ER316L filler weld specimen and relatively better in ER309L filler welded specimen. The highest pitting corrosion resistance is related with the high chromium content in ER309L composition.
Originality/value
This experimental study is original and conducted with 316L and 430 stainless steel with ER316L, ER309 and without fillers, which will help the oil, shipbuilding and chemical industries.
期刊介绍:
Anti-Corrosion Methods and Materials publishes a broad coverage of the materials and techniques employed in corrosion prevention. Coverage is essentially of a practical nature and designed to be of material benefit to those working in the field. Proven applications are covered together with company news and new product information. Anti-Corrosion Methods and Materials now also includes research articles that reflect the most interesting and strategically important research and development activities from around the world.
Every year, industry pays a massive and rising cost for its corrosion problems. Research and development into new materials, processes and initiatives to combat this loss is increasing, and new findings are constantly coming to light which can help to beat corrosion problems throughout industry. This journal uniquely focuses on these exciting developments to make essential reading for anyone aiming to regain profits lost through corrosion difficulties.
• New methods, materials and software
• New developments in research and industry
• Stainless steels
• Protection of structural steelwork
• Industry update, conference news, dates and events
• Environmental issues
• Health & safety, including EC regulations
• Corrosion monitoring and plant health assessment
• The latest equipment and processes
• Corrosion cost and corrosion risk management.