{"title":"海带随需应变:为研究和恢复目的培养大型公牛海带孢子体的封闭系统规程","authors":"Varoon P. Supratya, Patrick T. Martone","doi":"10.1111/jpy.13413","DOIUrl":null,"url":null,"abstract":"<p>Culturing kelps for commercial, conservation, and scientific purposes is becoming increasingly widespread. However, kelp aquaculture methods are typically designed for ocean-based farms, and these methods may not be applicable for smaller scale cultivation efforts common in research and restoration. Growing kelps in closed, recirculating culture systems may address many of these constraints, yet closed system approaches have remained largely undescribed. Extensive declines of the bull kelp (<i>Nereocystis luetkeana</i>), an ecologically important canopy species in the Northeast Pacific, have received widespread attention and prompted numerous research and conservation initiatives. Here, we detail two approaches for cultivating <i>N. luetkeana</i> sporophytes in closed recirculating systems. <i>Nereocystis luetkeana</i> were reared as attached thalli in custom seaweed growth flumes and also free-floating in tumble culture tanks. Careful control of stocking density, water motion, aeration, and nutrient levels allowed for rapid growth and normal morphogenesis of laboratory-grown kelp. Culture systems reached up to 3 kg · m<sup>−3</sup>, and individual thalli attained lengths of up to 6 m before the trials were terminated. Our results demonstrate the potential of recirculating, closed culture systems to overcome limitations associated with traditional culture methods. Recirculating systems enable the precise control of culture conditions, improving biosecurity and facilitating cultivar development and other research. Kelps can be grown away from the ocean or outside their native ranges, and seasonal or annual species can be produced year-round without seasonal constraints.</p>","PeriodicalId":16831,"journal":{"name":"Journal of Phycology","volume":null,"pages":null},"PeriodicalIF":2.8000,"publicationDate":"2023-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jpy.13413","citationCount":"0","resultStr":"{\"title\":\"Kelps on demand: Closed-system protocols for culturing large bull kelp sporophytes for research and restoration\",\"authors\":\"Varoon P. Supratya, Patrick T. Martone\",\"doi\":\"10.1111/jpy.13413\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Culturing kelps for commercial, conservation, and scientific purposes is becoming increasingly widespread. However, kelp aquaculture methods are typically designed for ocean-based farms, and these methods may not be applicable for smaller scale cultivation efforts common in research and restoration. Growing kelps in closed, recirculating culture systems may address many of these constraints, yet closed system approaches have remained largely undescribed. Extensive declines of the bull kelp (<i>Nereocystis luetkeana</i>), an ecologically important canopy species in the Northeast Pacific, have received widespread attention and prompted numerous research and conservation initiatives. Here, we detail two approaches for cultivating <i>N. luetkeana</i> sporophytes in closed recirculating systems. <i>Nereocystis luetkeana</i> were reared as attached thalli in custom seaweed growth flumes and also free-floating in tumble culture tanks. Careful control of stocking density, water motion, aeration, and nutrient levels allowed for rapid growth and normal morphogenesis of laboratory-grown kelp. Culture systems reached up to 3 kg · m<sup>−3</sup>, and individual thalli attained lengths of up to 6 m before the trials were terminated. Our results demonstrate the potential of recirculating, closed culture systems to overcome limitations associated with traditional culture methods. Recirculating systems enable the precise control of culture conditions, improving biosecurity and facilitating cultivar development and other research. Kelps can be grown away from the ocean or outside their native ranges, and seasonal or annual species can be produced year-round without seasonal constraints.</p>\",\"PeriodicalId\":16831,\"journal\":{\"name\":\"Journal of Phycology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2023-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jpy.13413\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Phycology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/jpy.13413\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MARINE & FRESHWATER BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Phycology","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jpy.13413","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MARINE & FRESHWATER BIOLOGY","Score":null,"Total":0}
Kelps on demand: Closed-system protocols for culturing large bull kelp sporophytes for research and restoration
Culturing kelps for commercial, conservation, and scientific purposes is becoming increasingly widespread. However, kelp aquaculture methods are typically designed for ocean-based farms, and these methods may not be applicable for smaller scale cultivation efforts common in research and restoration. Growing kelps in closed, recirculating culture systems may address many of these constraints, yet closed system approaches have remained largely undescribed. Extensive declines of the bull kelp (Nereocystis luetkeana), an ecologically important canopy species in the Northeast Pacific, have received widespread attention and prompted numerous research and conservation initiatives. Here, we detail two approaches for cultivating N. luetkeana sporophytes in closed recirculating systems. Nereocystis luetkeana were reared as attached thalli in custom seaweed growth flumes and also free-floating in tumble culture tanks. Careful control of stocking density, water motion, aeration, and nutrient levels allowed for rapid growth and normal morphogenesis of laboratory-grown kelp. Culture systems reached up to 3 kg · m−3, and individual thalli attained lengths of up to 6 m before the trials were terminated. Our results demonstrate the potential of recirculating, closed culture systems to overcome limitations associated with traditional culture methods. Recirculating systems enable the precise control of culture conditions, improving biosecurity and facilitating cultivar development and other research. Kelps can be grown away from the ocean or outside their native ranges, and seasonal or annual species can be produced year-round without seasonal constraints.
期刊介绍:
The Journal of Phycology was founded in 1965 by the Phycological Society of America. All aspects of basic and applied research on algae are included to provide a common medium for the ecologist, physiologist, cell biologist, molecular biologist, morphologist, oceanographer, taxonomist, geneticist, and biochemist. The Journal also welcomes research that emphasizes algal interactions with other organisms and the roles of algae as components of natural ecosystems.
All aspects of basic and applied research on algae are included to provide a common medium for the ecologist, physiologist, cell biologist, molecular biologist, morphologist, oceanographer, acquaculturist, systematist, geneticist, and biochemist. The Journal also welcomes research that emphasizes algal interactions with other organisms and the roles of algae as components of natural ecosystems.