迹线图如何帮助解释荟萃分析结果

IF 5 2区 生物学 Q1 MATHEMATICAL & COMPUTATIONAL BIOLOGY Research Synthesis Methods Pub Date : 2023-12-15 DOI:10.1002/jrsm.1693
Christian Röver, David Rindskopf, Tim Friede
{"title":"迹线图如何帮助解释荟萃分析结果","authors":"Christian Röver,&nbsp;David Rindskopf,&nbsp;Tim Friede","doi":"10.1002/jrsm.1693","DOIUrl":null,"url":null,"abstract":"<p>The trace plot is seldom used in meta-analysis, yet it is a very informative plot. In this article, we define and illustrate what the trace plot is, and discuss why it is important. The Bayesian version of the plot combines the posterior density of <span></span><math>\n <mrow>\n <mi>τ</mi>\n </mrow></math>, the between-study standard deviation, and the shrunken estimates of the study effects as a function of <span></span><math>\n <mrow>\n <mi>τ</mi>\n </mrow></math>. With a small or moderate number of studies, <span></span><math>\n <mrow>\n <mi>τ</mi>\n </mrow></math> is not estimated with much precision, and parameter estimates and shrunken study effect estimates can vary widely depending on the correct value of <span></span><math>\n <mrow>\n <mi>τ</mi>\n </mrow></math>. The trace plot allows visualization of the sensitivity to <span></span><math>\n <mrow>\n <mi>τ</mi>\n </mrow></math> along with a plot that shows which values of <span></span><math>\n <mrow>\n <mi>τ</mi>\n </mrow></math> are plausible and which are implausible. A comparable frequentist or empirical Bayes version provides similar results. The concepts are illustrated using examples in meta-analysis and meta-regression; implementation in <span>R</span> is facilitated in a Bayesian or frequentist framework using the <span>bayesmeta</span> and <span>metafor</span> packages, respectively.</p>","PeriodicalId":226,"journal":{"name":"Research Synthesis Methods","volume":"15 3","pages":"413-429"},"PeriodicalIF":5.0000,"publicationDate":"2023-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jrsm.1693","citationCount":"0","resultStr":"{\"title\":\"How trace plots help interpret meta-analysis results\",\"authors\":\"Christian Röver,&nbsp;David Rindskopf,&nbsp;Tim Friede\",\"doi\":\"10.1002/jrsm.1693\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The trace plot is seldom used in meta-analysis, yet it is a very informative plot. In this article, we define and illustrate what the trace plot is, and discuss why it is important. The Bayesian version of the plot combines the posterior density of <span></span><math>\\n <mrow>\\n <mi>τ</mi>\\n </mrow></math>, the between-study standard deviation, and the shrunken estimates of the study effects as a function of <span></span><math>\\n <mrow>\\n <mi>τ</mi>\\n </mrow></math>. With a small or moderate number of studies, <span></span><math>\\n <mrow>\\n <mi>τ</mi>\\n </mrow></math> is not estimated with much precision, and parameter estimates and shrunken study effect estimates can vary widely depending on the correct value of <span></span><math>\\n <mrow>\\n <mi>τ</mi>\\n </mrow></math>. The trace plot allows visualization of the sensitivity to <span></span><math>\\n <mrow>\\n <mi>τ</mi>\\n </mrow></math> along with a plot that shows which values of <span></span><math>\\n <mrow>\\n <mi>τ</mi>\\n </mrow></math> are plausible and which are implausible. A comparable frequentist or empirical Bayes version provides similar results. The concepts are illustrated using examples in meta-analysis and meta-regression; implementation in <span>R</span> is facilitated in a Bayesian or frequentist framework using the <span>bayesmeta</span> and <span>metafor</span> packages, respectively.</p>\",\"PeriodicalId\":226,\"journal\":{\"name\":\"Research Synthesis Methods\",\"volume\":\"15 3\",\"pages\":\"413-429\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2023-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jrsm.1693\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Research Synthesis Methods\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jrsm.1693\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research Synthesis Methods","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jrsm.1693","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

迹线图在荟萃分析中很少使用,但它却是一种信息量非常大的图。在本文中,我们将对迹线图进行定义和说明,并讨论其重要性的原因。贝叶斯版本的迹线图结合了τ$$ \tau $$的后验密度、研究间标准差以及作为τ$$ \tau $$函数的研究效应收缩估计值。在研究数量较少或适中的情况下,τ$$ \tau$$的估计精度不高,参数估计值和缩减的研究效应估计值会因τ$$ \tau$$的正确值不同而有很大差异。迹线图可以直观地显示对 τ$$ \tau $$ 的敏感性,同时显示哪些 τ$$ \tau $$ 值是可信的,哪些是不可信的。可比较的频数主义或经验贝叶斯版本提供了类似的结果。我们使用元分析和元回归中的示例来说明这些概念;在贝叶斯或频数主义框架下,分别使用 bayesmeta 和 metafor 软件包可以方便地在 R 中实现这些概念。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
How trace plots help interpret meta-analysis results

The trace plot is seldom used in meta-analysis, yet it is a very informative plot. In this article, we define and illustrate what the trace plot is, and discuss why it is important. The Bayesian version of the plot combines the posterior density of τ , the between-study standard deviation, and the shrunken estimates of the study effects as a function of τ . With a small or moderate number of studies, τ is not estimated with much precision, and parameter estimates and shrunken study effect estimates can vary widely depending on the correct value of τ . The trace plot allows visualization of the sensitivity to τ along with a plot that shows which values of τ are plausible and which are implausible. A comparable frequentist or empirical Bayes version provides similar results. The concepts are illustrated using examples in meta-analysis and meta-regression; implementation in R is facilitated in a Bayesian or frequentist framework using the bayesmeta and metafor packages, respectively.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Research Synthesis Methods
Research Synthesis Methods MATHEMATICAL & COMPUTATIONAL BIOLOGYMULTID-MULTIDISCIPLINARY SCIENCES
CiteScore
16.90
自引率
3.10%
发文量
75
期刊介绍: Research Synthesis Methods is a reputable, peer-reviewed journal that focuses on the development and dissemination of methods for conducting systematic research synthesis. Our aim is to advance the knowledge and application of research synthesis methods across various disciplines. Our journal provides a platform for the exchange of ideas and knowledge related to designing, conducting, analyzing, interpreting, reporting, and applying research synthesis. While research synthesis is commonly practiced in the health and social sciences, our journal also welcomes contributions from other fields to enrich the methodologies employed in research synthesis across scientific disciplines. By bridging different disciplines, we aim to foster collaboration and cross-fertilization of ideas, ultimately enhancing the quality and effectiveness of research synthesis methods. Whether you are a researcher, practitioner, or stakeholder involved in research synthesis, our journal strives to offer valuable insights and practical guidance for your work.
期刊最新文献
Issue Information A tutorial on aggregating evidence from conceptual replication studies using the product Bayes factor Evolving use of the Cochrane Risk of Bias 2 tool in biomedical systematic reviews Exploring methodological approaches used in network meta-analysis of psychological interventions: A scoping review An evaluation of the performance of stopping rules in AI-aided screening for psychological meta-analytical research
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1