{"title":"单细胞分析揭示坏死在神经元退化中的潜在作用,并显示帕金森病进展过程中神经元与免疫细胞的相互作用增强","authors":"Xiaomei Zeng, Zhifen Han, Kehan Chen, Peng Zeng, Yidan Tang, Lijuan Li","doi":"10.1155/2023/5057778","DOIUrl":null,"url":null,"abstract":"Parkinson’s disease (PD) is a common neuron degenerative disease among the old, characterized by uncontrollable movements and an impaired posture. Although widely investigated on its pathology and treatment, the disease remains incompletely understood. Single-cell RNA sequencing (scRNA-seq) has been applied to the area of PD, providing valuable data for related research. However, few works have taken deeper insights into the causes of neuron death and cell-cell interaction between the cell types in the brain. Our bioinformatics analyses revealed necroptosis-related genes (NRGs) enrichment in neuron degeneration and selecting the cells by NRGs levels showed two subtypes within the main degenerative cell types in the midbrain. NRG-low subtype was largely replaced by NRG-high subtype in the patients, indicating the striking change of cell state related to necroptosis in PD progression. Moreover, we carried out cell-cell interaction analyses between cell types and found that microglia (MG)’s interaction strength with glutamatergic neuron (GLU), GABAergic neuron (GABA), and dopaminergic neuron (DA) was significantly upregulated in PD. Also, MG show much stronger interaction with NRG-high subtypes and a stronger cell killing function in PD samples. Additionally, we identified CLDN11 as a novel interaction pattern specific to necroptosis neurons and MG. We also found LEF1 and TCF4 as key transcriptional regulators in neuron degeneration. These findings suggest that MG were significantly overactivated in PD patients to clear abnormal neurons, especially the NRG-high cells, explaining the neuron inflammation in PD. Our analyses provide insights into the causes of neuron death and inflammation in PD from single-cell resolution, which could be seriously considered in clinical trials.","PeriodicalId":19907,"journal":{"name":"Parkinson's Disease","volume":"234 1 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2023-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Single-Cell Analyses Reveal Necroptosis’s Potential Role in Neuron Degeneration and Show Enhanced Neuron-Immune Cell Interaction in Parkinson’s Disease Progression\",\"authors\":\"Xiaomei Zeng, Zhifen Han, Kehan Chen, Peng Zeng, Yidan Tang, Lijuan Li\",\"doi\":\"10.1155/2023/5057778\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Parkinson’s disease (PD) is a common neuron degenerative disease among the old, characterized by uncontrollable movements and an impaired posture. Although widely investigated on its pathology and treatment, the disease remains incompletely understood. Single-cell RNA sequencing (scRNA-seq) has been applied to the area of PD, providing valuable data for related research. However, few works have taken deeper insights into the causes of neuron death and cell-cell interaction between the cell types in the brain. Our bioinformatics analyses revealed necroptosis-related genes (NRGs) enrichment in neuron degeneration and selecting the cells by NRGs levels showed two subtypes within the main degenerative cell types in the midbrain. NRG-low subtype was largely replaced by NRG-high subtype in the patients, indicating the striking change of cell state related to necroptosis in PD progression. Moreover, we carried out cell-cell interaction analyses between cell types and found that microglia (MG)’s interaction strength with glutamatergic neuron (GLU), GABAergic neuron (GABA), and dopaminergic neuron (DA) was significantly upregulated in PD. Also, MG show much stronger interaction with NRG-high subtypes and a stronger cell killing function in PD samples. Additionally, we identified CLDN11 as a novel interaction pattern specific to necroptosis neurons and MG. We also found LEF1 and TCF4 as key transcriptional regulators in neuron degeneration. These findings suggest that MG were significantly overactivated in PD patients to clear abnormal neurons, especially the NRG-high cells, explaining the neuron inflammation in PD. Our analyses provide insights into the causes of neuron death and inflammation in PD from single-cell resolution, which could be seriously considered in clinical trials.\",\"PeriodicalId\":19907,\"journal\":{\"name\":\"Parkinson's Disease\",\"volume\":\"234 1 1\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2023-12-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Parkinson's Disease\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1155/2023/5057778\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CLINICAL NEUROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Parkinson's Disease","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1155/2023/5057778","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
Single-Cell Analyses Reveal Necroptosis’s Potential Role in Neuron Degeneration and Show Enhanced Neuron-Immune Cell Interaction in Parkinson’s Disease Progression
Parkinson’s disease (PD) is a common neuron degenerative disease among the old, characterized by uncontrollable movements and an impaired posture. Although widely investigated on its pathology and treatment, the disease remains incompletely understood. Single-cell RNA sequencing (scRNA-seq) has been applied to the area of PD, providing valuable data for related research. However, few works have taken deeper insights into the causes of neuron death and cell-cell interaction between the cell types in the brain. Our bioinformatics analyses revealed necroptosis-related genes (NRGs) enrichment in neuron degeneration and selecting the cells by NRGs levels showed two subtypes within the main degenerative cell types in the midbrain. NRG-low subtype was largely replaced by NRG-high subtype in the patients, indicating the striking change of cell state related to necroptosis in PD progression. Moreover, we carried out cell-cell interaction analyses between cell types and found that microglia (MG)’s interaction strength with glutamatergic neuron (GLU), GABAergic neuron (GABA), and dopaminergic neuron (DA) was significantly upregulated in PD. Also, MG show much stronger interaction with NRG-high subtypes and a stronger cell killing function in PD samples. Additionally, we identified CLDN11 as a novel interaction pattern specific to necroptosis neurons and MG. We also found LEF1 and TCF4 as key transcriptional regulators in neuron degeneration. These findings suggest that MG were significantly overactivated in PD patients to clear abnormal neurons, especially the NRG-high cells, explaining the neuron inflammation in PD. Our analyses provide insights into the causes of neuron death and inflammation in PD from single-cell resolution, which could be seriously considered in clinical trials.
期刊介绍:
Parkinson’s Disease is a peer-reviewed, Open Access journal that publishes original research articles, review articles, and clinical studies related to the epidemiology, etiology, pathogenesis, genetics, cellular, molecular and neurophysiology, as well as the diagnosis and treatment of Parkinson’s disease.