LKB1 和 CRMP1 协同促进坐骨神经损伤的修复

IF 2.7 4区 医学 Q2 DEVELOPMENTAL BIOLOGY Developmental Neurobiology Pub Date : 2023-12-17 DOI:10.1002/dneu.22932
Yang Liu, You-jia Xu
{"title":"LKB1 和 CRMP1 协同促进坐骨神经损伤的修复","authors":"Yang Liu,&nbsp;You-jia Xu","doi":"10.1002/dneu.22932","DOIUrl":null,"url":null,"abstract":"<p>After peripheral nervous system injury, Schwann cells (SCs) can repair axons by providing a growth-promoting microenvironment. The aim of this study is to explore the effects and mechanisms of LKB1 and CRMP1 on the repair of sciatic nerve injury (SNI). The expressions of LKB1 and CRMP1 were changed in rats with SNI from 12 h to 4 weeks by hematoxylin–eosin staining, RT-PCR assay, immunohistochemical staining, and western blotting. Immunofluorescence results show that LKB1 and CRMP1 are co-localized in the regenerated axons of the sciatic nerve tissue of SNI rats. Co-immunoprecipitation indicates that LKB1 interacts with CRMP1. LKB1 interference suppresses the phosphorylation level of CRMP1. Overexpression of LKB1 and CRMP1 promotes the invasion and migration of SCs, and nerve cell protuberance extends. The structure of the myelin sheath in the sciatic nerve of the model group was found to be loose and disordered. Rats in the model group had higher pain thresholds and heat sensitivity response times than those in the control group. Nerve conduction velocity, the latency of action potential, and the peak value of compound muscle action potential in the SNI group were significantly lower than those in the control group, and the muscle atrophy was severe. Overexpression of LKB1 may significantly improve the above conditions. However, the function of LKB1 to improve SNI is abolished by the interference of CRMP1. In summary, the interaction between LKB1 and CRMP promotes the migration and differentiation of SCs and the extension of neurons, thereby improving the repair of nerve injury.</p>","PeriodicalId":11300,"journal":{"name":"Developmental Neurobiology","volume":"84 1","pages":"18-31"},"PeriodicalIF":2.7000,"publicationDate":"2023-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"LKB1 and CRMP1 cooperatively promote the repair of the sciatic nerve injury\",\"authors\":\"Yang Liu,&nbsp;You-jia Xu\",\"doi\":\"10.1002/dneu.22932\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>After peripheral nervous system injury, Schwann cells (SCs) can repair axons by providing a growth-promoting microenvironment. The aim of this study is to explore the effects and mechanisms of LKB1 and CRMP1 on the repair of sciatic nerve injury (SNI). The expressions of LKB1 and CRMP1 were changed in rats with SNI from 12 h to 4 weeks by hematoxylin–eosin staining, RT-PCR assay, immunohistochemical staining, and western blotting. Immunofluorescence results show that LKB1 and CRMP1 are co-localized in the regenerated axons of the sciatic nerve tissue of SNI rats. Co-immunoprecipitation indicates that LKB1 interacts with CRMP1. LKB1 interference suppresses the phosphorylation level of CRMP1. Overexpression of LKB1 and CRMP1 promotes the invasion and migration of SCs, and nerve cell protuberance extends. The structure of the myelin sheath in the sciatic nerve of the model group was found to be loose and disordered. Rats in the model group had higher pain thresholds and heat sensitivity response times than those in the control group. Nerve conduction velocity, the latency of action potential, and the peak value of compound muscle action potential in the SNI group were significantly lower than those in the control group, and the muscle atrophy was severe. Overexpression of LKB1 may significantly improve the above conditions. However, the function of LKB1 to improve SNI is abolished by the interference of CRMP1. In summary, the interaction between LKB1 and CRMP promotes the migration and differentiation of SCs and the extension of neurons, thereby improving the repair of nerve injury.</p>\",\"PeriodicalId\":11300,\"journal\":{\"name\":\"Developmental Neurobiology\",\"volume\":\"84 1\",\"pages\":\"18-31\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2023-12-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Developmental Neurobiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/dneu.22932\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"DEVELOPMENTAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Developmental Neurobiology","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/dneu.22932","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"DEVELOPMENTAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

周围神经系统损伤后,许旺细胞(SC)可通过提供促进生长的微环境来修复轴突。本研究旨在探讨 LKB1 和 CRMP1 对坐骨神经损伤(SNI)修复的影响和机制。通过苏木精-伊红染色、RT-PCR检测、免疫组化染色和Western印迹,研究了12 h至4周坐骨神经损伤大鼠体内LKB1和CRMP1的表达变化。免疫荧光结果显示,LKB1和CRMP1共定位在SNI大鼠坐骨神经组织再生轴突中。共免疫沉淀表明 LKB1 与 CRMP1 相互作用。LKB1 干扰抑制了 CRMP1 的磷酸化水平。LKB1和CRMP1的过表达促进了SC的侵袭和迁移以及神经细胞突起的扩展。模型组大鼠坐骨神经髓鞘结构松散、紊乱。模型组大鼠的痛阈和热敏反应时间高于对照组。SNI组的神经传导速度、动作电位潜伏期和复合肌动作电位峰值明显低于对照组,肌肉萎缩严重。过表达 LKB1 可明显改善上述情况。然而,LKB1改善SNI的功能在CRMP1的干扰下被取消了。总之,LKB1 和 CRMP 之间的相互作用促进了 SCs 的迁移和分化以及神经元的延伸,从而改善了神经损伤的修复。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
LKB1 and CRMP1 cooperatively promote the repair of the sciatic nerve injury

After peripheral nervous system injury, Schwann cells (SCs) can repair axons by providing a growth-promoting microenvironment. The aim of this study is to explore the effects and mechanisms of LKB1 and CRMP1 on the repair of sciatic nerve injury (SNI). The expressions of LKB1 and CRMP1 were changed in rats with SNI from 12 h to 4 weeks by hematoxylin–eosin staining, RT-PCR assay, immunohistochemical staining, and western blotting. Immunofluorescence results show that LKB1 and CRMP1 are co-localized in the regenerated axons of the sciatic nerve tissue of SNI rats. Co-immunoprecipitation indicates that LKB1 interacts with CRMP1. LKB1 interference suppresses the phosphorylation level of CRMP1. Overexpression of LKB1 and CRMP1 promotes the invasion and migration of SCs, and nerve cell protuberance extends. The structure of the myelin sheath in the sciatic nerve of the model group was found to be loose and disordered. Rats in the model group had higher pain thresholds and heat sensitivity response times than those in the control group. Nerve conduction velocity, the latency of action potential, and the peak value of compound muscle action potential in the SNI group were significantly lower than those in the control group, and the muscle atrophy was severe. Overexpression of LKB1 may significantly improve the above conditions. However, the function of LKB1 to improve SNI is abolished by the interference of CRMP1. In summary, the interaction between LKB1 and CRMP promotes the migration and differentiation of SCs and the extension of neurons, thereby improving the repair of nerve injury.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Developmental Neurobiology
Developmental Neurobiology 生物-发育生物学
CiteScore
6.50
自引率
0.00%
发文量
45
审稿时长
4-8 weeks
期刊介绍: Developmental Neurobiology (previously the Journal of Neurobiology ) publishes original research articles on development, regeneration, repair and plasticity of the nervous system and on the ontogeny of behavior. High quality contributions in these areas are solicited, with an emphasis on experimental as opposed to purely descriptive work. The Journal also will consider manuscripts reporting novel approaches and techniques for the study of the development of the nervous system as well as occasional special issues on topics of significant current interest. We welcome suggestions on possible topics from our readers.
期刊最新文献
Issue Information Cellularity Defects Are Not Ubiquitous in the Brains of Fetuses With Down Syndrome Dysregulation of parvalbumin expression and neurotransmitter imbalance in the auditory cortex of the BTBR mouse model of autism spectrum disorder Efficient Dlx2-mediated astrocyte-to-neuron conversion and inhibition of neuroinflammation by NeuroD1 Issue Information
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1