(职前教师在选择物理教学视频时如何使用 YouTube 的功能?

IF 2.2 3区 教育学 Q1 EDUCATION & EDUCATIONAL RESEARCH Research in Science Education Pub Date : 2023-12-20 DOI:10.1007/s11165-023-10148-z
Philipp Bitzenbauer, Tom Teußner, Joaquin M. Veith, Christoph Kulgemeyer
{"title":"(职前教师在选择物理教学视频时如何使用 YouTube 的功能?","authors":"Philipp Bitzenbauer, Tom Teußner, Joaquin M. Veith, Christoph Kulgemeyer","doi":"10.1007/s11165-023-10148-z","DOIUrl":null,"url":null,"abstract":"<p>This mixed-methods study examines how pre-service teachers select instructional videos on YouTube for physics teaching. The study focuses on the role of surface features that YouTube provides (e.g., likes, views, thumbnails) and the comments underneath the videos in the decision-making process using videos on quantum physics topics as an example. The study consists of two phases: In phase 1, N = 24 (pre-service) physics teachers were randomly assigned to one of three groups, each covering a different quantum topic (entanglement, quantum tunneling, or quantum computing, respectively). From eight options provided, they selected a suitable video for teaching while their eye movements were tracked using a stationary eye tracker in a laboratory setting, and think-aloud data was collected. In the subsequent phase 2, participants were allowed to freely choose one YouTube video on a second topic of the above-mentioned ones while thinking aloud. The results reveal a significant emphasis on video thumbnails during selection, with over one-third of the fixation time directed towards them. Think-aloud data confirms the importance of thumbnails in decision-making, e.g., as evidenced by a categorization of the study participants’ arguments and thoughts voiced. A detailed analysis identifies that participants did not rely on (content-related) comments despite they have been found to be significantly correlated with the videos’ explaining quality. Instead, decisions were influenced by surface features and pragmatic factors such as channel familiarity. Retrospective reflections through a questionnaire including rating scale items support these observations. Building on the existing empirical evidence, a decision tree is proposed to help teachers identify high-quality videos considering duration, likes, comments, and interactions. The decision tree can serve as a hypothesis for future research and needs to be evaluated in terms of how it can help systematize the process of selecting high-quality YouTube videos for science teaching.</p>","PeriodicalId":47988,"journal":{"name":"Research in Science Education","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2023-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"(How) Do Pre-service Teachers Use YouTube Features in the Selection of Instructional Videos for Physics Teaching?\",\"authors\":\"Philipp Bitzenbauer, Tom Teußner, Joaquin M. Veith, Christoph Kulgemeyer\",\"doi\":\"10.1007/s11165-023-10148-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This mixed-methods study examines how pre-service teachers select instructional videos on YouTube for physics teaching. The study focuses on the role of surface features that YouTube provides (e.g., likes, views, thumbnails) and the comments underneath the videos in the decision-making process using videos on quantum physics topics as an example. The study consists of two phases: In phase 1, N = 24 (pre-service) physics teachers were randomly assigned to one of three groups, each covering a different quantum topic (entanglement, quantum tunneling, or quantum computing, respectively). From eight options provided, they selected a suitable video for teaching while their eye movements were tracked using a stationary eye tracker in a laboratory setting, and think-aloud data was collected. In the subsequent phase 2, participants were allowed to freely choose one YouTube video on a second topic of the above-mentioned ones while thinking aloud. The results reveal a significant emphasis on video thumbnails during selection, with over one-third of the fixation time directed towards them. Think-aloud data confirms the importance of thumbnails in decision-making, e.g., as evidenced by a categorization of the study participants’ arguments and thoughts voiced. A detailed analysis identifies that participants did not rely on (content-related) comments despite they have been found to be significantly correlated with the videos’ explaining quality. Instead, decisions were influenced by surface features and pragmatic factors such as channel familiarity. Retrospective reflections through a questionnaire including rating scale items support these observations. Building on the existing empirical evidence, a decision tree is proposed to help teachers identify high-quality videos considering duration, likes, comments, and interactions. The decision tree can serve as a hypothesis for future research and needs to be evaluated in terms of how it can help systematize the process of selecting high-quality YouTube videos for science teaching.</p>\",\"PeriodicalId\":47988,\"journal\":{\"name\":\"Research in Science Education\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2023-12-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Research in Science Education\",\"FirstCategoryId\":\"95\",\"ListUrlMain\":\"https://doi.org/10.1007/s11165-023-10148-z\",\"RegionNum\":3,\"RegionCategory\":\"教育学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"EDUCATION & EDUCATIONAL RESEARCH\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research in Science Education","FirstCategoryId":"95","ListUrlMain":"https://doi.org/10.1007/s11165-023-10148-z","RegionNum":3,"RegionCategory":"教育学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"EDUCATION & EDUCATIONAL RESEARCH","Score":null,"Total":0}
引用次数: 0

摘要

本混合方法研究探讨了职前教师如何选择 YouTube 上的物理教学视频。以量子物理主题的视频为例,研究重点是 YouTube 提供的表面特征(如赞、浏览量、缩略图)和视频下方的评论在决策过程中的作用。研究分为两个阶段:在第一阶段,N = 24 名(职前)物理教师被随机分配到三个小组中的一个,每个小组涉及不同的量子主题(分别是纠缠、量子隧道或量子计算)。他们从提供的八个选项中选择一个合适的教学视频,同时在实验室环境中使用固定眼动仪跟踪他们的眼动,并收集思考-朗读数据。在随后的第二阶段,参与者可以自由选择一个关于上述主题中第二个主题的 YouTube 视频,同时大声思考。结果显示,在选择过程中,参与者对视频缩略图的重视程度很高,超过三分之一的固定时间都集中在缩略图上。朗读思考的数据证实了缩略图在决策中的重要性,例如,对研究参与者的论点和所表达的想法进行分类就证明了这一点。详细的分析表明,参与者并不依赖于(内容相关的)评论,尽管这些评论与视频的解说质量有着显著的相关性。相反,决定受到表面特征和实用因素(如频道熟悉度)的影响。通过包含评分量表项目的调查问卷进行的回顾性反思也支持上述观点。在现有经验证据的基础上,我们提出了一个决策树,以帮助教师在考虑时长、点赞、评论和互动的情况下识别高质量的视频。该决策树可作为未来研究的一个假设,并需要对其如何帮助科学教学系统化选择高质量 YouTube 视频的过程进行评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
(How) Do Pre-service Teachers Use YouTube Features in the Selection of Instructional Videos for Physics Teaching?

This mixed-methods study examines how pre-service teachers select instructional videos on YouTube for physics teaching. The study focuses on the role of surface features that YouTube provides (e.g., likes, views, thumbnails) and the comments underneath the videos in the decision-making process using videos on quantum physics topics as an example. The study consists of two phases: In phase 1, N = 24 (pre-service) physics teachers were randomly assigned to one of three groups, each covering a different quantum topic (entanglement, quantum tunneling, or quantum computing, respectively). From eight options provided, they selected a suitable video for teaching while their eye movements were tracked using a stationary eye tracker in a laboratory setting, and think-aloud data was collected. In the subsequent phase 2, participants were allowed to freely choose one YouTube video on a second topic of the above-mentioned ones while thinking aloud. The results reveal a significant emphasis on video thumbnails during selection, with over one-third of the fixation time directed towards them. Think-aloud data confirms the importance of thumbnails in decision-making, e.g., as evidenced by a categorization of the study participants’ arguments and thoughts voiced. A detailed analysis identifies that participants did not rely on (content-related) comments despite they have been found to be significantly correlated with the videos’ explaining quality. Instead, decisions were influenced by surface features and pragmatic factors such as channel familiarity. Retrospective reflections through a questionnaire including rating scale items support these observations. Building on the existing empirical evidence, a decision tree is proposed to help teachers identify high-quality videos considering duration, likes, comments, and interactions. The decision tree can serve as a hypothesis for future research and needs to be evaluated in terms of how it can help systematize the process of selecting high-quality YouTube videos for science teaching.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Research in Science Education
Research in Science Education EDUCATION & EDUCATIONAL RESEARCH-
CiteScore
6.40
自引率
8.70%
发文量
45
期刊介绍: 2020 Five-Year Impact Factor: 4.021 2020 Impact Factor: 5.439 Ranking: 107/1319 (Education) – Scopus 2020 CiteScore 34.7 – Scopus Research in Science Education (RISE ) is highly regarded and widely recognised as a leading international journal for the promotion of scholarly science education research that is of interest to a wide readership. RISE publishes scholarly work that promotes science education research in all contexts and at all levels of education. This intention is aligned with the goals of Australasian Science Education Research Association (ASERA), the association connected with the journal. You should consider submitting your manscript to RISE if your research: Examines contexts such as early childhood, primary, secondary, tertiary, workplace, and informal learning as they relate to science education; and Advances our knowledge in science education research rather than reproducing what we already know. RISE will consider scholarly works that explore areas such as STEM, health, environment, cognitive science, neuroscience, psychology and higher education where science education is forefronted. The scholarly works of interest published within RISE reflect and speak to a diversity of opinions, approaches and contexts. Additionally, the journal’s editorial team welcomes a diversity of form in relation to science education-focused submissions. With this in mind, RISE seeks to publish empirical research papers. Empircal contributions are: Theoretically or conceptually grounded; Relevant to science education theory and practice; Highlight limitations of the study; and Identify possible future research opportunities. From time to time, we commission independent reviewers to undertake book reviews of recent monographs, edited collections and/or textbooks. Before you submit your manuscript to RISE, please consider the following checklist. Your paper is: No longer than 6000 words, including references. Sufficiently proof read to ensure strong grammar, syntax, coherence and good readability; Explicitly stating the significant and/or innovative contribution to the body of knowledge in your field in science education; Internationalised in the sense that your work has relevance beyond your context to a broader audience; and Making a contribution to the ongoing conversation by engaging substantively with prior research published in RISE. While we encourage authors to submit papers to a maximum length of 6000 words, in rare cases where the authors make a persuasive case that a work makes a highly significant original contribution to knowledge in science education, the editors may choose to publish longer works.
期刊最新文献
Exploring the Impact of Social, Cultural, and Science Factors on Students’ STEM Career Preferences Creativity as Key Trigger to Cognitive Achievement: Effects of Digital and Analog Learning Interventions Fostering Epistemic Space for Collaborative Solutions in Primary Science Through a Socratic Seminar Inquiry Approach An Ontological Perspective on Mechanical Energy Conservation problem-solving in high School Students A Comparative Case Study Investigating Indigenous and Rural Elementary Students’ Conceptions of Community Engineering
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1