{"title":"橙皮甙通过 MAPK 信号通路影响破骨细胞分化","authors":"Jingxian Fan, Chengfeng Xu, Hui Shi, Xun Wang, Tiantian Zheng, Minyu Zhou, Zhiqiang Zhang, Yingxiao Fu, Baoding Tang","doi":"10.17219/acem/174393","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The number and activity of osteoblasts and osteoclasts play an important role in skeletal biology, especially in bone reconstruction. Scientific and rational regulation of osteoclast formation and activity has become a critical strategy aimed at inhibiting the loss of bone mass in the body and alleviating the occurrence of bone diseases. Currently, there are only a few reports related to hesperetin-regulated osteoclast differentiation.</p><p><strong>Objectives: </strong>To investigate the influence of hesperetin on osteoclast-like cell differentiation and formation, and determine whether the MAPK signaling pathway is involved in the differentiation process.</p><p><strong>Material and methods: </strong>The RAW264.7 cells were induced and cultured in vitro to promote their differentiation into osteoclast-like cells. Tetrazolium bromide was utilized to determine the effects of different concentrations (100, 200, 400, and 600 μM) of hesperetin on the proliferation of osteoclast-like cell precursors. Osteoclast-like cell differentiation was conducted using tartrate-resistant acid phosphatase (TRAP) staining assay. The status of nuclei and actin filaments of differentiated osteoclast-like cells was observed with the use of 4',6-diamidino-2-phenylindole dihydrochloride (DAPI) and actin-tracker green staining experiments. Changes in key proteins of the MAPK signaling pathway were detected using western blot.</p><p><strong>Results: </strong>The results of TRAP staining experiments showed that the number of osteoclast-like cells decreased with the increase in hesperetin concentration. The DAPI and actin-tracker green staining demonstrated that the nuclei of differentiated osteoclast-like cells reduced in size with the increase in hesperetin concentration, and the osteoclast-like cells became smaller. Western blot for key MAPK signaling pathway proteins revealed that phospho-ERK and phospho-p38 protein levels were not significantly inhibited, but phospho-JNK protein levels were reduced.</p><p><strong>Conclusions: </strong>Hesperetin inhibits the differentiation of osteoclast-like cells. Further studies revealed that hesperetin also affects the activation level of phospho-JNK, a key signaling protein of the MAPK signaling pathway, in the induced differentiation of osteoclast-like cells.</p>","PeriodicalId":7306,"journal":{"name":"Advances in Clinical and Experimental Medicine","volume":" ","pages":"1131-1139"},"PeriodicalIF":2.1000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hesperetin affects osteoclast differentiation via MAPK signaling pathway.\",\"authors\":\"Jingxian Fan, Chengfeng Xu, Hui Shi, Xun Wang, Tiantian Zheng, Minyu Zhou, Zhiqiang Zhang, Yingxiao Fu, Baoding Tang\",\"doi\":\"10.17219/acem/174393\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>The number and activity of osteoblasts and osteoclasts play an important role in skeletal biology, especially in bone reconstruction. Scientific and rational regulation of osteoclast formation and activity has become a critical strategy aimed at inhibiting the loss of bone mass in the body and alleviating the occurrence of bone diseases. Currently, there are only a few reports related to hesperetin-regulated osteoclast differentiation.</p><p><strong>Objectives: </strong>To investigate the influence of hesperetin on osteoclast-like cell differentiation and formation, and determine whether the MAPK signaling pathway is involved in the differentiation process.</p><p><strong>Material and methods: </strong>The RAW264.7 cells were induced and cultured in vitro to promote their differentiation into osteoclast-like cells. Tetrazolium bromide was utilized to determine the effects of different concentrations (100, 200, 400, and 600 μM) of hesperetin on the proliferation of osteoclast-like cell precursors. Osteoclast-like cell differentiation was conducted using tartrate-resistant acid phosphatase (TRAP) staining assay. The status of nuclei and actin filaments of differentiated osteoclast-like cells was observed with the use of 4',6-diamidino-2-phenylindole dihydrochloride (DAPI) and actin-tracker green staining experiments. Changes in key proteins of the MAPK signaling pathway were detected using western blot.</p><p><strong>Results: </strong>The results of TRAP staining experiments showed that the number of osteoclast-like cells decreased with the increase in hesperetin concentration. The DAPI and actin-tracker green staining demonstrated that the nuclei of differentiated osteoclast-like cells reduced in size with the increase in hesperetin concentration, and the osteoclast-like cells became smaller. Western blot for key MAPK signaling pathway proteins revealed that phospho-ERK and phospho-p38 protein levels were not significantly inhibited, but phospho-JNK protein levels were reduced.</p><p><strong>Conclusions: </strong>Hesperetin inhibits the differentiation of osteoclast-like cells. Further studies revealed that hesperetin also affects the activation level of phospho-JNK, a key signaling protein of the MAPK signaling pathway, in the induced differentiation of osteoclast-like cells.</p>\",\"PeriodicalId\":7306,\"journal\":{\"name\":\"Advances in Clinical and Experimental Medicine\",\"volume\":\" \",\"pages\":\"1131-1139\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Clinical and Experimental Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.17219/acem/174393\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Clinical and Experimental Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.17219/acem/174393","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
Hesperetin affects osteoclast differentiation via MAPK signaling pathway.
Background: The number and activity of osteoblasts and osteoclasts play an important role in skeletal biology, especially in bone reconstruction. Scientific and rational regulation of osteoclast formation and activity has become a critical strategy aimed at inhibiting the loss of bone mass in the body and alleviating the occurrence of bone diseases. Currently, there are only a few reports related to hesperetin-regulated osteoclast differentiation.
Objectives: To investigate the influence of hesperetin on osteoclast-like cell differentiation and formation, and determine whether the MAPK signaling pathway is involved in the differentiation process.
Material and methods: The RAW264.7 cells were induced and cultured in vitro to promote their differentiation into osteoclast-like cells. Tetrazolium bromide was utilized to determine the effects of different concentrations (100, 200, 400, and 600 μM) of hesperetin on the proliferation of osteoclast-like cell precursors. Osteoclast-like cell differentiation was conducted using tartrate-resistant acid phosphatase (TRAP) staining assay. The status of nuclei and actin filaments of differentiated osteoclast-like cells was observed with the use of 4',6-diamidino-2-phenylindole dihydrochloride (DAPI) and actin-tracker green staining experiments. Changes in key proteins of the MAPK signaling pathway were detected using western blot.
Results: The results of TRAP staining experiments showed that the number of osteoclast-like cells decreased with the increase in hesperetin concentration. The DAPI and actin-tracker green staining demonstrated that the nuclei of differentiated osteoclast-like cells reduced in size with the increase in hesperetin concentration, and the osteoclast-like cells became smaller. Western blot for key MAPK signaling pathway proteins revealed that phospho-ERK and phospho-p38 protein levels were not significantly inhibited, but phospho-JNK protein levels were reduced.
Conclusions: Hesperetin inhibits the differentiation of osteoclast-like cells. Further studies revealed that hesperetin also affects the activation level of phospho-JNK, a key signaling protein of the MAPK signaling pathway, in the induced differentiation of osteoclast-like cells.
期刊介绍:
Advances in Clinical and Experimental Medicine has been published by the Wroclaw Medical University since 1992. Establishing the medical journal was the idea of Prof. Bogumił Halawa, Chair of the Department of Cardiology, and was fully supported by the Rector of Wroclaw Medical University, Prof. Zbigniew Knapik. Prof. Halawa was also the first editor-in-chief, between 1992-1997. The journal, then entitled "Postępy Medycyny Klinicznej i Doświadczalnej", appeared quarterly.
Prof. Leszek Paradowski was editor-in-chief from 1997-1999. In 1998 he initiated alterations in the profile and cover design of the journal which were accepted by the Editorial Board. The title was changed to Advances in Clinical and Experimental Medicine. Articles in English were welcomed. A number of outstanding representatives of medical science from Poland and abroad were invited to participate in the newly established International Editorial Staff.
Prof. Antonina Harłozińska-Szmyrka was editor-in-chief in years 2000-2005, in years 2006-2007 once again prof. Leszek Paradowski and prof. Maria Podolak-Dawidziak was editor-in-chief in years 2008-2016. Since 2017 the editor-in chief is prof. Maciej Bagłaj.
Since July 2005, original papers have been published only in English. Case reports are no longer accepted. The manuscripts are reviewed by two independent reviewers and a statistical reviewer, and English texts are proofread by a native speaker.
The journal has been indexed in several databases: Scopus, Ulrich’sTM International Periodicals Directory, Index Copernicus and since 2007 in Thomson Reuters databases: Science Citation Index Expanded i Journal Citation Reports/Science Edition.
In 2010 the journal obtained Impact Factor which is now 1.179 pts. Articles published in the journal are worth 15 points among Polish journals according to the Polish Committee for Scientific Research and 169.43 points according to the Index Copernicus.
Since November 7, 2012, Advances in Clinical and Experimental Medicine has been indexed and included in National Library of Medicine’s MEDLINE database. English abstracts printed in the journal are included and searchable using PubMed http://www.ncbi.nlm.nih.gov/pubmed.