利用不同规模的先进技术预测水稻病害:现状与未来展望。

IF 4.6 4区 农林科学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY aBIOTECH Pub Date : 2023-11-29 DOI:10.1007/s42994-023-00126-4
Ruyue Li, Sishi Chen, Haruna Matsumoto, Mostafa Gouda, Yusufjon Gafforov, Mengcen Wang, Yufei Liu
{"title":"利用不同规模的先进技术预测水稻病害:现状与未来展望。","authors":"Ruyue Li,&nbsp;Sishi Chen,&nbsp;Haruna Matsumoto,&nbsp;Mostafa Gouda,&nbsp;Yusufjon Gafforov,&nbsp;Mengcen Wang,&nbsp;Yufei Liu","doi":"10.1007/s42994-023-00126-4","DOIUrl":null,"url":null,"abstract":"<div><p>The past few years have witnessed significant progress in emerging disease detection techniques for accurately and rapidly tracking rice diseases and predicting potential solutions. In this review we focus on image processing techniques using machine learning (ML) and deep learning (DL) models related to multi-scale rice diseases. Furthermore, we summarize applications of different detection techniques, including genomic, physiological, and biochemical approaches. In addition, we also present the state-of-the-art in contemporary optical sensing applications of pathogen–plant interaction phenotypes. This review serves as a valuable resource for researchers seeking effective solutions to address the challenges of high-throughput data and model recognition for early detection of issues affecting rice crops through ML and DL models.</p></div>","PeriodicalId":53135,"journal":{"name":"aBIOTECH","volume":"4 4","pages":"359 - 371"},"PeriodicalIF":4.6000,"publicationDate":"2023-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10721578/pdf/","citationCount":"0","resultStr":"{\"title\":\"Predicting rice diseases using advanced technologies at different scales: present status and future perspectives\",\"authors\":\"Ruyue Li,&nbsp;Sishi Chen,&nbsp;Haruna Matsumoto,&nbsp;Mostafa Gouda,&nbsp;Yusufjon Gafforov,&nbsp;Mengcen Wang,&nbsp;Yufei Liu\",\"doi\":\"10.1007/s42994-023-00126-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The past few years have witnessed significant progress in emerging disease detection techniques for accurately and rapidly tracking rice diseases and predicting potential solutions. In this review we focus on image processing techniques using machine learning (ML) and deep learning (DL) models related to multi-scale rice diseases. Furthermore, we summarize applications of different detection techniques, including genomic, physiological, and biochemical approaches. In addition, we also present the state-of-the-art in contemporary optical sensing applications of pathogen–plant interaction phenotypes. This review serves as a valuable resource for researchers seeking effective solutions to address the challenges of high-throughput data and model recognition for early detection of issues affecting rice crops through ML and DL models.</p></div>\",\"PeriodicalId\":53135,\"journal\":{\"name\":\"aBIOTECH\",\"volume\":\"4 4\",\"pages\":\"359 - 371\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2023-11-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10721578/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"aBIOTECH\",\"FirstCategoryId\":\"1091\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s42994-023-00126-4\",\"RegionNum\":4,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"aBIOTECH","FirstCategoryId":"1091","ListUrlMain":"https://link.springer.com/article/10.1007/s42994-023-00126-4","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

过去几年中,用于准确、快速跟踪水稻病害并预测潜在解决方案的新兴病害检测技术取得了重大进展。在这篇综述中,我们重点介绍了与多尺度水稻病害相关的使用机器学习(ML)和深度学习(DL)模型的图像处理技术。此外,我们还总结了不同检测技术的应用,包括基因组学、生理学和生物化学方法。此外,我们还介绍了病原体与植物相互作用表型的当代光学传感应用的最新进展。本综述为研究人员提供了宝贵的资源,帮助他们寻求有效的解决方案,以应对高通量数据和模型识别方面的挑战,从而通过 ML 和 DL 模型及早发现影响水稻作物的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Predicting rice diseases using advanced technologies at different scales: present status and future perspectives

The past few years have witnessed significant progress in emerging disease detection techniques for accurately and rapidly tracking rice diseases and predicting potential solutions. In this review we focus on image processing techniques using machine learning (ML) and deep learning (DL) models related to multi-scale rice diseases. Furthermore, we summarize applications of different detection techniques, including genomic, physiological, and biochemical approaches. In addition, we also present the state-of-the-art in contemporary optical sensing applications of pathogen–plant interaction phenotypes. This review serves as a valuable resource for researchers seeking effective solutions to address the challenges of high-throughput data and model recognition for early detection of issues affecting rice crops through ML and DL models.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.70
自引率
2.80%
发文量
0
期刊最新文献
Inference and prioritization of tissue-specific regulons in Arabidopsis and Oryza Correction: Characterization of two constitutive promoters RPS28 and EIF1 for studying soybean growth, development, and symbiotic nodule development Simultaneous genetic transformation and genome editing of mixed lines in soybean (Glycine max) and maize (Zea mays) Genome editing in plants using the TnpB transposase system Efficient genome editing in rice with miniature Cas12f variants
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1