Tabasum Shafi, Roohi Rasool Wani, Showkat Hussain, Imtiyaz A Bhat, Rumana Makhdoomi, Sheikh Adil Bashir, Iffat Hassan, Zafar A Shah
{"title":"探究特应性皮炎中 TGF-β1/SMAD3 信号的失调:分子和免疫组化分析\"。","authors":"Tabasum Shafi, Roohi Rasool Wani, Showkat Hussain, Imtiyaz A Bhat, Rumana Makhdoomi, Sheikh Adil Bashir, Iffat Hassan, Zafar A Shah","doi":"10.1093/cei/uxad130","DOIUrl":null,"url":null,"abstract":"<p><p>Atopic dermatitis (AD) is a persistent and recurring inflammatory condition affecting the skin. An expanding corpus of evidence indicates the potential participation of transforming growth factor-β1 (TGF-β1) in the modulation of inflammation and tissue remodeling in AD. The primary objective of this study was to examine the aberrant modulation of TGF-β1/small mothers against decapentaplegic homolog 3 (SMAD3) signaling through a comprehensive analysis of their molecular and protein expression profiles. The study encompassed an aggregate of 37 participants, which included 25 AD patients and 12 controls. The assessment of mRNA and protein levels of TGF-β1 and SMAD3 was conducted utilizing quantitative real-time PCR and immunohistochemistry (IHC), whereas serum IgE and vitamin D levels were estimated by ELISA and chemiluminescence, respectively. Quantitative analysis demonstrated a 2.5-fold upregulation of TGF-β1 mRNA expression in the lesional AD skin (P < 0.0001). IHC also exhibited a comparable augmented pattern, characterized by moderate to strong staining intensities. In addition, TGF-β1 mRNA showed an association with vitamin D deficiency in serum (P < 0.02), and its protein expression was linked with the disease severity (P < 0.01) Furthermore, a significant decrease in the expression of the SMAD3 gene was observed in the affected skin (P = 0.0004). This finding was further confirmed by evaluating the protein expression and phosphorylation of SMAD3, both of which exhibited a decrease. These findings suggest that there is a dysregulation in the TGF-β1/SMAD3 signaling pathway in AD. Furthermore, the observed augmentation in mRNA and protein expression of TGF-β1, along with its correlation with the disease severity, holds considerable clinical significance and emphasizes its potential role in AD pathogenesis.</p>","PeriodicalId":10268,"journal":{"name":"Clinical and experimental immunology","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2024-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11036103/pdf/","citationCount":"0","resultStr":"{\"title\":\"Investigating dysregulation of TGF-β1/SMAD3 signaling in atopic dermatitis: a molecular and immunohistochemical analysis.\",\"authors\":\"Tabasum Shafi, Roohi Rasool Wani, Showkat Hussain, Imtiyaz A Bhat, Rumana Makhdoomi, Sheikh Adil Bashir, Iffat Hassan, Zafar A Shah\",\"doi\":\"10.1093/cei/uxad130\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Atopic dermatitis (AD) is a persistent and recurring inflammatory condition affecting the skin. An expanding corpus of evidence indicates the potential participation of transforming growth factor-β1 (TGF-β1) in the modulation of inflammation and tissue remodeling in AD. The primary objective of this study was to examine the aberrant modulation of TGF-β1/small mothers against decapentaplegic homolog 3 (SMAD3) signaling through a comprehensive analysis of their molecular and protein expression profiles. The study encompassed an aggregate of 37 participants, which included 25 AD patients and 12 controls. The assessment of mRNA and protein levels of TGF-β1 and SMAD3 was conducted utilizing quantitative real-time PCR and immunohistochemistry (IHC), whereas serum IgE and vitamin D levels were estimated by ELISA and chemiluminescence, respectively. Quantitative analysis demonstrated a 2.5-fold upregulation of TGF-β1 mRNA expression in the lesional AD skin (P < 0.0001). IHC also exhibited a comparable augmented pattern, characterized by moderate to strong staining intensities. In addition, TGF-β1 mRNA showed an association with vitamin D deficiency in serum (P < 0.02), and its protein expression was linked with the disease severity (P < 0.01) Furthermore, a significant decrease in the expression of the SMAD3 gene was observed in the affected skin (P = 0.0004). This finding was further confirmed by evaluating the protein expression and phosphorylation of SMAD3, both of which exhibited a decrease. These findings suggest that there is a dysregulation in the TGF-β1/SMAD3 signaling pathway in AD. Furthermore, the observed augmentation in mRNA and protein expression of TGF-β1, along with its correlation with the disease severity, holds considerable clinical significance and emphasizes its potential role in AD pathogenesis.</p>\",\"PeriodicalId\":10268,\"journal\":{\"name\":\"Clinical and experimental immunology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-04-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11036103/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Clinical and experimental immunology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1093/cei/uxad130\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"IMMUNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical and experimental immunology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/cei/uxad130","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
Investigating dysregulation of TGF-β1/SMAD3 signaling in atopic dermatitis: a molecular and immunohistochemical analysis.
Atopic dermatitis (AD) is a persistent and recurring inflammatory condition affecting the skin. An expanding corpus of evidence indicates the potential participation of transforming growth factor-β1 (TGF-β1) in the modulation of inflammation and tissue remodeling in AD. The primary objective of this study was to examine the aberrant modulation of TGF-β1/small mothers against decapentaplegic homolog 3 (SMAD3) signaling through a comprehensive analysis of their molecular and protein expression profiles. The study encompassed an aggregate of 37 participants, which included 25 AD patients and 12 controls. The assessment of mRNA and protein levels of TGF-β1 and SMAD3 was conducted utilizing quantitative real-time PCR and immunohistochemistry (IHC), whereas serum IgE and vitamin D levels were estimated by ELISA and chemiluminescence, respectively. Quantitative analysis demonstrated a 2.5-fold upregulation of TGF-β1 mRNA expression in the lesional AD skin (P < 0.0001). IHC also exhibited a comparable augmented pattern, characterized by moderate to strong staining intensities. In addition, TGF-β1 mRNA showed an association with vitamin D deficiency in serum (P < 0.02), and its protein expression was linked with the disease severity (P < 0.01) Furthermore, a significant decrease in the expression of the SMAD3 gene was observed in the affected skin (P = 0.0004). This finding was further confirmed by evaluating the protein expression and phosphorylation of SMAD3, both of which exhibited a decrease. These findings suggest that there is a dysregulation in the TGF-β1/SMAD3 signaling pathway in AD. Furthermore, the observed augmentation in mRNA and protein expression of TGF-β1, along with its correlation with the disease severity, holds considerable clinical significance and emphasizes its potential role in AD pathogenesis.
期刊介绍:
Clinical & Experimental Immunology (established in 1966) is an authoritative international journal publishing high-quality research studies in translational and clinical immunology that have the potential to transform our understanding of the immunopathology of human disease and/or change clinical practice.
The journal is focused on translational and clinical immunology and is among the foremost journals in this field, attracting high-quality papers from across the world. Translation is viewed as a process of applying ideas, insights and discoveries generated through scientific studies to the treatment, prevention or diagnosis of human disease. Clinical immunology has evolved as a field to encompass the application of state-of-the-art technologies such as next-generation sequencing, metagenomics and high-dimensional phenotyping to understand mechanisms that govern the outcomes of clinical trials.