用于台式核磁共振反应监测的可靠外部校准方法。

IF 1.9 3区 化学 Q3 CHEMISTRY, MULTIDISCIPLINARY Magnetic Resonance in Chemistry Pub Date : 2023-12-20 DOI:10.1002/mrc.5421
Tristan Maschmeyer, Breanna Conklin, Thomas C. Malig, David J. Russell, Kenji L. Kurita, Jason E. Hein, José G. Napolitano
{"title":"用于台式核磁共振反应监测的可靠外部校准方法。","authors":"Tristan Maschmeyer,&nbsp;Breanna Conklin,&nbsp;Thomas C. Malig,&nbsp;David J. Russell,&nbsp;Kenji L. Kurita,&nbsp;Jason E. Hein,&nbsp;José G. Napolitano","doi":"10.1002/mrc.5421","DOIUrl":null,"url":null,"abstract":"<p>Nuclear magnetic resonance (NMR) spectroscopy is a powerful analytical technique with the ability to acquire both quantitative and structurally insightful data for multiple components in a test sample. This makes NMR spectroscopy a desirable tool to understand, monitor, and optimize chemical transformations. While quantitative NMR (qNMR) approaches relying on internal standards are well-established, using an absolute external calibration scheme is beneficial for reaction monitoring as resonance overlap complications from an added reference material to the sample can be avoided. Particularly, this type of qNMR technique is of interest with benchtop NMR spectrometers as the likelihood of resonance overlap is only enhanced with the lower magnetic field strengths of the used permanent magnets. The included study describes a simple yet robust methodology to determine concentration conversion factors for NMR systems using single- and multi-analyte linear regression models. This approach is leveraged to investigate a pharmaceutically relevant amide coupling batch reaction. An <i>on-line</i> stopped-flow (<i>i.e.</i>, interrupted-flow or paused-flow) benchtop NMR system was used to monitor both the 1,1′-carbonyldiimidazole (CDI) promoted acid activation and the amide coupling. The results highlight how quantitative measurements in benchtop NMR systems can provide valuable information and enable analysts to make decisions in real time.</p>","PeriodicalId":18142,"journal":{"name":"Magnetic Resonance in Chemistry","volume":"62 3","pages":"169-178"},"PeriodicalIF":1.9000,"publicationDate":"2023-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mrc.5421","citationCount":"0","resultStr":"{\"title\":\"A reliable external calibration method for reaction monitoring with benchtop NMR\",\"authors\":\"Tristan Maschmeyer,&nbsp;Breanna Conklin,&nbsp;Thomas C. Malig,&nbsp;David J. Russell,&nbsp;Kenji L. Kurita,&nbsp;Jason E. Hein,&nbsp;José G. Napolitano\",\"doi\":\"10.1002/mrc.5421\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Nuclear magnetic resonance (NMR) spectroscopy is a powerful analytical technique with the ability to acquire both quantitative and structurally insightful data for multiple components in a test sample. This makes NMR spectroscopy a desirable tool to understand, monitor, and optimize chemical transformations. While quantitative NMR (qNMR) approaches relying on internal standards are well-established, using an absolute external calibration scheme is beneficial for reaction monitoring as resonance overlap complications from an added reference material to the sample can be avoided. Particularly, this type of qNMR technique is of interest with benchtop NMR spectrometers as the likelihood of resonance overlap is only enhanced with the lower magnetic field strengths of the used permanent magnets. The included study describes a simple yet robust methodology to determine concentration conversion factors for NMR systems using single- and multi-analyte linear regression models. This approach is leveraged to investigate a pharmaceutically relevant amide coupling batch reaction. An <i>on-line</i> stopped-flow (<i>i.e.</i>, interrupted-flow or paused-flow) benchtop NMR system was used to monitor both the 1,1′-carbonyldiimidazole (CDI) promoted acid activation and the amide coupling. The results highlight how quantitative measurements in benchtop NMR systems can provide valuable information and enable analysts to make decisions in real time.</p>\",\"PeriodicalId\":18142,\"journal\":{\"name\":\"Magnetic Resonance in Chemistry\",\"volume\":\"62 3\",\"pages\":\"169-178\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2023-12-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mrc.5421\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Magnetic Resonance in Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/mrc.5421\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Magnetic Resonance in Chemistry","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mrc.5421","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

核磁共振(NMR)光谱是一种功能强大的分析技术,能够获取测试样品中多种成分的定量和结构数据。这使得核磁共振光谱成为了解、监控和优化化学转化的理想工具。虽然依赖于内部标准的定量 NMR(qNMR)方法已经非常成熟,但使用绝对外部校准方案有利于反应监测,因为可以避免样品中添加参考材料所产生的共振重叠并发症。这种 qNMR 技术尤其适用于台式 NMR 光谱仪,因为所使用的永磁体磁场强度较低,共振重叠的可能性就会增大。本研究介绍了一种简单而稳健的方法,利用单分析物和多分析物线性回归模型确定 NMR 系统的浓度转换系数。利用这种方法研究了与制药相关的酰胺偶联批量反应。在线停流(即间断流或暂停流)台式 NMR 系统用于监测 1,1'-羰基二咪唑 (CDI) 促进的酸活化和酰胺偶联。结果凸显了台式 NMR 系统的定量测量如何能够提供有价值的信息,并使分析人员能够实时做出决策。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A reliable external calibration method for reaction monitoring with benchtop NMR

Nuclear magnetic resonance (NMR) spectroscopy is a powerful analytical technique with the ability to acquire both quantitative and structurally insightful data for multiple components in a test sample. This makes NMR spectroscopy a desirable tool to understand, monitor, and optimize chemical transformations. While quantitative NMR (qNMR) approaches relying on internal standards are well-established, using an absolute external calibration scheme is beneficial for reaction monitoring as resonance overlap complications from an added reference material to the sample can be avoided. Particularly, this type of qNMR technique is of interest with benchtop NMR spectrometers as the likelihood of resonance overlap is only enhanced with the lower magnetic field strengths of the used permanent magnets. The included study describes a simple yet robust methodology to determine concentration conversion factors for NMR systems using single- and multi-analyte linear regression models. This approach is leveraged to investigate a pharmaceutically relevant amide coupling batch reaction. An on-line stopped-flow (i.e., interrupted-flow or paused-flow) benchtop NMR system was used to monitor both the 1,1′-carbonyldiimidazole (CDI) promoted acid activation and the amide coupling. The results highlight how quantitative measurements in benchtop NMR systems can provide valuable information and enable analysts to make decisions in real time.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.70
自引率
10.00%
发文量
99
审稿时长
1 months
期刊介绍: MRC is devoted to the rapid publication of papers which are concerned with the development of magnetic resonance techniques, or in which the application of such techniques plays a pivotal part. Contributions from scientists working in all areas of NMR, ESR and NQR are invited, and papers describing applications in all branches of chemistry, structural biology and materials chemistry are published. The journal is of particular interest not only to scientists working in academic research, but also those working in commercial organisations who need to keep up-to-date with the latest practical applications of magnetic resonance techniques.
期刊最新文献
Structural Elucidation and NMR Spectral Assignments of New Diphenyl Ether Derivatives From Liuweizhiji Gegen-Sangshen Oral Liquid. Liquid-Phase NMR of Humic and Fulvic Acids. Two New Alkaloids of the Endophytic Fungus Rhizopus oryzae From Atractylodes macrocephala Koidz. HRMAS NMR for Studying Solvent-Induced Mobility of Polymer Chains and Metallocene Migration Into Low-Density Polyethylene (LDPE). Structural Elucidation and Complete NMR Spectral Assignments of Monascus Monacolin Analogs.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1