Anthony Owusu-Mensah, Omer Berenfeld, Michel Audette
{"title":"阐明 His-purkinje 系统在长 QT 介导的心律失常中的作用。","authors":"Anthony Owusu-Mensah, Omer Berenfeld, Michel Audette","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Mutation in the hERG gene leading to partial or complete blockade of the rapid delayed rectifier current causes Long QT Type 2 (LQT2) phenotype, the second most common form of Long QT Syndrome. However, the exact involvement of the His-Purkinje System (HPS) remains elusive. We utilized a finite element model of the rabbit ventricles integrated with a HPS to elucidate the role of HPS during LQT2-mediated arrhythmia. Following the induction of persistent reentry from an ectopic stimulus, we isolated the HPS at different time points. Moreover, we varied the coupling resistance and the number of myocytes at the Purkinje-Myocardial Junctions (PMJs) to ascertain how the junctional parameters altered reentry dynamics. Reentry was terminated with the earliest termination time for reentry coinciding with the earliest time the HPS was isolated. This observation provides evidence of direct involvement of the HPS during LQT2-mediated ventricular arrhythmia. Increasing the coupling resistance or the number of myocytes at the PMJs reduced the percentage of successful retrograde propagation during reentry. Thus, the HPS alters reentry dynamics. Our multi-scale computer modeling outcomes offer important new understandings of probable arrhythmia mechanisms under LQT2 circumstances.</p>","PeriodicalId":72238,"journal":{"name":"Annual Modeling and Simulation Conference (ANNSIM). Annual Modeling and Simulation Conference (Online)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10705055/pdf/","citationCount":"0","resultStr":"{\"title\":\"ELUCIDATING THE ROLE OF THE HIS-PURKINJE SYSTEM DURING LONG QT MEDIATED ARRHYTHMIAS.\",\"authors\":\"Anthony Owusu-Mensah, Omer Berenfeld, Michel Audette\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Mutation in the hERG gene leading to partial or complete blockade of the rapid delayed rectifier current causes Long QT Type 2 (LQT2) phenotype, the second most common form of Long QT Syndrome. However, the exact involvement of the His-Purkinje System (HPS) remains elusive. We utilized a finite element model of the rabbit ventricles integrated with a HPS to elucidate the role of HPS during LQT2-mediated arrhythmia. Following the induction of persistent reentry from an ectopic stimulus, we isolated the HPS at different time points. Moreover, we varied the coupling resistance and the number of myocytes at the Purkinje-Myocardial Junctions (PMJs) to ascertain how the junctional parameters altered reentry dynamics. Reentry was terminated with the earliest termination time for reentry coinciding with the earliest time the HPS was isolated. This observation provides evidence of direct involvement of the HPS during LQT2-mediated ventricular arrhythmia. Increasing the coupling resistance or the number of myocytes at the PMJs reduced the percentage of successful retrograde propagation during reentry. Thus, the HPS alters reentry dynamics. Our multi-scale computer modeling outcomes offer important new understandings of probable arrhythmia mechanisms under LQT2 circumstances.</p>\",\"PeriodicalId\":72238,\"journal\":{\"name\":\"Annual Modeling and Simulation Conference (ANNSIM). Annual Modeling and Simulation Conference (Online)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10705055/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annual Modeling and Simulation Conference (ANNSIM). Annual Modeling and Simulation Conference (Online)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/6/26 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual Modeling and Simulation Conference (ANNSIM). Annual Modeling and Simulation Conference (Online)","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/6/26 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
ELUCIDATING THE ROLE OF THE HIS-PURKINJE SYSTEM DURING LONG QT MEDIATED ARRHYTHMIAS.
Mutation in the hERG gene leading to partial or complete blockade of the rapid delayed rectifier current causes Long QT Type 2 (LQT2) phenotype, the second most common form of Long QT Syndrome. However, the exact involvement of the His-Purkinje System (HPS) remains elusive. We utilized a finite element model of the rabbit ventricles integrated with a HPS to elucidate the role of HPS during LQT2-mediated arrhythmia. Following the induction of persistent reentry from an ectopic stimulus, we isolated the HPS at different time points. Moreover, we varied the coupling resistance and the number of myocytes at the Purkinje-Myocardial Junctions (PMJs) to ascertain how the junctional parameters altered reentry dynamics. Reentry was terminated with the earliest termination time for reentry coinciding with the earliest time the HPS was isolated. This observation provides evidence of direct involvement of the HPS during LQT2-mediated ventricular arrhythmia. Increasing the coupling resistance or the number of myocytes at the PMJs reduced the percentage of successful retrograde propagation during reentry. Thus, the HPS alters reentry dynamics. Our multi-scale computer modeling outcomes offer important new understandings of probable arrhythmia mechanisms under LQT2 circumstances.