Ting Ma, Xinguo Ge, Jie Zhu, Chengxin Song, Pinhao Wang, Jiali Cai
{"title":"薯蓣皂苷通过调节 USP8/TGM2 通路抑制胃癌细胞的增殖、转移并增强其自噬能力","authors":"Ting Ma, Xinguo Ge, Jie Zhu, Chengxin Song, Pinhao Wang, Jiali Cai","doi":"10.1007/s12033-023-00978-7","DOIUrl":null,"url":null,"abstract":"<p><p>Gastric cancer (GC) is one of the most common cancers worldwide. Dioscin has been shown to have anti-cancer effects in GC. The aim of this study is to explore a novel mechanism of dioscin in repressing GC progression. Cell viability, proliferation, apoptosis and invasion were measured by 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide (MTT), 5-ethynyl-2'-deoxyuridine (EdU), flow cytometry and transwell assays, respectively. Monodansylcadaverine (MDC) staining was used to assess cell autophagy. The expression of transglutaminase-2 (TGM2), ubiquitin-specific peptidase 8 (USP8) and autophagy-related proteins was detected by quantitative real-time polymerase chain reaction (qRT-PCR) and western blot. A xenograft tumor model was established to investigate the function of dioscin in vivo. Dioscin inhibited GC cell proliferation and invasion, but induced apoptosis and autophagy. TGM2 was highly expressed in GC, and dioscin suppressed GC progression by decreasing the protein level of TGM2. Furthermore, USP8 positively regulated TGM2 expression, and TGM2 overexpression reversed the inhibitory effect of USP8 knockdown on GC cell progression. USP8 abated the effect of dioscin in GC cells. Dioscin decreased the protein level of TGM2 via regulating USP8. In addition, dioscin restrained GC tumor growth in vivo. Dioscin played an anti-cancer effect in GC by enhancing cancer cell autophagy via regulating the USP8/TGM2 pathway.</p>","PeriodicalId":18865,"journal":{"name":"Molecular Biotechnology","volume":" ","pages":"3700-3711"},"PeriodicalIF":2.4000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dioscin Impedes Proliferation, Metastasis and Enhances Autophagy of Gastric Cancer Cells via Regulating the USP8/TGM2 Pathway.\",\"authors\":\"Ting Ma, Xinguo Ge, Jie Zhu, Chengxin Song, Pinhao Wang, Jiali Cai\",\"doi\":\"10.1007/s12033-023-00978-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Gastric cancer (GC) is one of the most common cancers worldwide. Dioscin has been shown to have anti-cancer effects in GC. The aim of this study is to explore a novel mechanism of dioscin in repressing GC progression. Cell viability, proliferation, apoptosis and invasion were measured by 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide (MTT), 5-ethynyl-2'-deoxyuridine (EdU), flow cytometry and transwell assays, respectively. Monodansylcadaverine (MDC) staining was used to assess cell autophagy. The expression of transglutaminase-2 (TGM2), ubiquitin-specific peptidase 8 (USP8) and autophagy-related proteins was detected by quantitative real-time polymerase chain reaction (qRT-PCR) and western blot. A xenograft tumor model was established to investigate the function of dioscin in vivo. Dioscin inhibited GC cell proliferation and invasion, but induced apoptosis and autophagy. TGM2 was highly expressed in GC, and dioscin suppressed GC progression by decreasing the protein level of TGM2. Furthermore, USP8 positively regulated TGM2 expression, and TGM2 overexpression reversed the inhibitory effect of USP8 knockdown on GC cell progression. USP8 abated the effect of dioscin in GC cells. Dioscin decreased the protein level of TGM2 via regulating USP8. In addition, dioscin restrained GC tumor growth in vivo. Dioscin played an anti-cancer effect in GC by enhancing cancer cell autophagy via regulating the USP8/TGM2 pathway.</p>\",\"PeriodicalId\":18865,\"journal\":{\"name\":\"Molecular Biotechnology\",\"volume\":\" \",\"pages\":\"3700-3711\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Biotechnology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s12033-023-00978-7\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/12/12 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Biotechnology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12033-023-00978-7","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/12/12 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Dioscin Impedes Proliferation, Metastasis and Enhances Autophagy of Gastric Cancer Cells via Regulating the USP8/TGM2 Pathway.
Gastric cancer (GC) is one of the most common cancers worldwide. Dioscin has been shown to have anti-cancer effects in GC. The aim of this study is to explore a novel mechanism of dioscin in repressing GC progression. Cell viability, proliferation, apoptosis and invasion were measured by 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide (MTT), 5-ethynyl-2'-deoxyuridine (EdU), flow cytometry and transwell assays, respectively. Monodansylcadaverine (MDC) staining was used to assess cell autophagy. The expression of transglutaminase-2 (TGM2), ubiquitin-specific peptidase 8 (USP8) and autophagy-related proteins was detected by quantitative real-time polymerase chain reaction (qRT-PCR) and western blot. A xenograft tumor model was established to investigate the function of dioscin in vivo. Dioscin inhibited GC cell proliferation and invasion, but induced apoptosis and autophagy. TGM2 was highly expressed in GC, and dioscin suppressed GC progression by decreasing the protein level of TGM2. Furthermore, USP8 positively regulated TGM2 expression, and TGM2 overexpression reversed the inhibitory effect of USP8 knockdown on GC cell progression. USP8 abated the effect of dioscin in GC cells. Dioscin decreased the protein level of TGM2 via regulating USP8. In addition, dioscin restrained GC tumor growth in vivo. Dioscin played an anti-cancer effect in GC by enhancing cancer cell autophagy via regulating the USP8/TGM2 pathway.
期刊介绍:
Molecular Biotechnology publishes original research papers on the application of molecular biology to both basic and applied research in the field of biotechnology. Particular areas of interest include the following: stability and expression of cloned gene products, cell transformation, gene cloning systems and the production of recombinant proteins, protein purification and analysis, transgenic species, developmental biology, mutation analysis, the applications of DNA fingerprinting, RNA interference, and PCR technology, microarray technology, proteomics, mass spectrometry, bioinformatics, plant molecular biology, microbial genetics, gene probes and the diagnosis of disease, pharmaceutical and health care products, therapeutic agents, vaccines, gene targeting, gene therapy, stem cell technology and tissue engineering, antisense technology, protein engineering and enzyme technology, monoclonal antibodies, glycobiology and glycomics, and agricultural biotechnology.