Jaehyun Kim, Minjeong Kim, Seok-Beom Yong, Heesoo Han, Seyoung Kang, Shayan Fakhraei Lahiji, Sangjin Kim, Juhyeong Hong, Yuha Seo, Yong-Hee Kim
{"title":"将 TGF-β 抑制剂包裹在巨噬细胞启发的多功能纳米颗粒中,用于癌症联合免疫疗法。","authors":"Jaehyun Kim, Minjeong Kim, Seok-Beom Yong, Heesoo Han, Seyoung Kang, Shayan Fakhraei Lahiji, Sangjin Kim, Juhyeong Hong, Yuha Seo, Yong-Hee Kim","doi":"10.1186/s40824-023-00470-y","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The emergence of cancer immunotherapies, notably immune checkpoint inhibitors, has revolutionized anti-cancer treatments. These treatments, however, have been reported to be effective in a limited range of cancers and cause immune-related adverse effects. Thus, for a broader applicability and enhanced responsiveness to solid tumor immunotherapy, immunomodulation of the tumor microenvironment is crucial. Transforming growth factor-β (TGF-β) has been implicated in reducing immunotherapy responsiveness by promoting M2-type differentiation of macrophages and facilitating cancer cell metastasis.</p><p><strong>Methods: </strong>In this study, we developed macrophage membrane-coated nanoparticles loaded with a TGF-βR1 kinase inhibitor, SD-208 (M[Formula: see text]-SDNP). Inhibitions of M2 macrophage polarization and epithelial-to-mesenchymal transition (EMT) of cancer cells were comprehensively evaluated through in vitro and in vivo experiments. Bio-distribution study and in vivo therapeutic effects of M[Formula: see text]-SDNP were investigated in orthotopic breast cancer model and intraveneously injected metastasis model.</p><p><strong>Results: </strong>M[Formula: see text]-SDNPs effectively inhibited cancer metastasis and converted the immunosuppressive tumor microenvironment (cold tumor) into an immunostimulatory tumor microenvironment (hot tumor), through specific tumor targeting and blockade of M2-type macrophage differentiation. Administration of M[Formula: see text]-SDNPs considerably augmented the population of cytotoxic T lymphocytes (CTLs) in the tumor tissue, thereby significantly enhancing responsiveness to immune checkpoint inhibitors, which demonstrates a robust anti-cancer effect in conjunction with anti-PD-1 antibodies.</p><p><strong>Conclusion: </strong>Collectively, responsiveness to immune checkpoint inhibitors was considerably enhanced and a robust anti-cancer effect was demonstrated with the combination treatment of M[Formula: see text]-SDNPs and anti-PD-1 antibody. This suggests a promising direction for future therapeutic strategies, utilizing bio-inspired nanotechnology to improve the efficacy of cancer immunotherapy.</p>","PeriodicalId":93902,"journal":{"name":"Biomaterials research","volume":"27 1","pages":"136"},"PeriodicalIF":8.1000,"publicationDate":"2023-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10729390/pdf/","citationCount":"0","resultStr":"{\"title\":\"Engineering TGF-β inhibitor-encapsulated macrophage-inspired multi-functional nanoparticles for combination cancer immunotherapy.\",\"authors\":\"Jaehyun Kim, Minjeong Kim, Seok-Beom Yong, Heesoo Han, Seyoung Kang, Shayan Fakhraei Lahiji, Sangjin Kim, Juhyeong Hong, Yuha Seo, Yong-Hee Kim\",\"doi\":\"10.1186/s40824-023-00470-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>The emergence of cancer immunotherapies, notably immune checkpoint inhibitors, has revolutionized anti-cancer treatments. These treatments, however, have been reported to be effective in a limited range of cancers and cause immune-related adverse effects. Thus, for a broader applicability and enhanced responsiveness to solid tumor immunotherapy, immunomodulation of the tumor microenvironment is crucial. Transforming growth factor-β (TGF-β) has been implicated in reducing immunotherapy responsiveness by promoting M2-type differentiation of macrophages and facilitating cancer cell metastasis.</p><p><strong>Methods: </strong>In this study, we developed macrophage membrane-coated nanoparticles loaded with a TGF-βR1 kinase inhibitor, SD-208 (M[Formula: see text]-SDNP). Inhibitions of M2 macrophage polarization and epithelial-to-mesenchymal transition (EMT) of cancer cells were comprehensively evaluated through in vitro and in vivo experiments. Bio-distribution study and in vivo therapeutic effects of M[Formula: see text]-SDNP were investigated in orthotopic breast cancer model and intraveneously injected metastasis model.</p><p><strong>Results: </strong>M[Formula: see text]-SDNPs effectively inhibited cancer metastasis and converted the immunosuppressive tumor microenvironment (cold tumor) into an immunostimulatory tumor microenvironment (hot tumor), through specific tumor targeting and blockade of M2-type macrophage differentiation. Administration of M[Formula: see text]-SDNPs considerably augmented the population of cytotoxic T lymphocytes (CTLs) in the tumor tissue, thereby significantly enhancing responsiveness to immune checkpoint inhibitors, which demonstrates a robust anti-cancer effect in conjunction with anti-PD-1 antibodies.</p><p><strong>Conclusion: </strong>Collectively, responsiveness to immune checkpoint inhibitors was considerably enhanced and a robust anti-cancer effect was demonstrated with the combination treatment of M[Formula: see text]-SDNPs and anti-PD-1 antibody. This suggests a promising direction for future therapeutic strategies, utilizing bio-inspired nanotechnology to improve the efficacy of cancer immunotherapy.</p>\",\"PeriodicalId\":93902,\"journal\":{\"name\":\"Biomaterials research\",\"volume\":\"27 1\",\"pages\":\"136\"},\"PeriodicalIF\":8.1000,\"publicationDate\":\"2023-12-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10729390/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomaterials research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1186/s40824-023-00470-y\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomaterials research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s40824-023-00470-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Engineering TGF-β inhibitor-encapsulated macrophage-inspired multi-functional nanoparticles for combination cancer immunotherapy.
Background: The emergence of cancer immunotherapies, notably immune checkpoint inhibitors, has revolutionized anti-cancer treatments. These treatments, however, have been reported to be effective in a limited range of cancers and cause immune-related adverse effects. Thus, for a broader applicability and enhanced responsiveness to solid tumor immunotherapy, immunomodulation of the tumor microenvironment is crucial. Transforming growth factor-β (TGF-β) has been implicated in reducing immunotherapy responsiveness by promoting M2-type differentiation of macrophages and facilitating cancer cell metastasis.
Methods: In this study, we developed macrophage membrane-coated nanoparticles loaded with a TGF-βR1 kinase inhibitor, SD-208 (M[Formula: see text]-SDNP). Inhibitions of M2 macrophage polarization and epithelial-to-mesenchymal transition (EMT) of cancer cells were comprehensively evaluated through in vitro and in vivo experiments. Bio-distribution study and in vivo therapeutic effects of M[Formula: see text]-SDNP were investigated in orthotopic breast cancer model and intraveneously injected metastasis model.
Results: M[Formula: see text]-SDNPs effectively inhibited cancer metastasis and converted the immunosuppressive tumor microenvironment (cold tumor) into an immunostimulatory tumor microenvironment (hot tumor), through specific tumor targeting and blockade of M2-type macrophage differentiation. Administration of M[Formula: see text]-SDNPs considerably augmented the population of cytotoxic T lymphocytes (CTLs) in the tumor tissue, thereby significantly enhancing responsiveness to immune checkpoint inhibitors, which demonstrates a robust anti-cancer effect in conjunction with anti-PD-1 antibodies.
Conclusion: Collectively, responsiveness to immune checkpoint inhibitors was considerably enhanced and a robust anti-cancer effect was demonstrated with the combination treatment of M[Formula: see text]-SDNPs and anti-PD-1 antibody. This suggests a promising direction for future therapeutic strategies, utilizing bio-inspired nanotechnology to improve the efficacy of cancer immunotherapy.