{"title":"用于 B-样条逼近的深度神经网络求解器","authors":"Zepeng Wen , Jiaqi Luo , Hongmei Kang","doi":"10.1016/j.cad.2023.103668","DOIUrl":null,"url":null,"abstract":"<div><p><span>This paper introduces a novel unsupervised deep learning<span> approach to address the knot placement problem in the field of B-spline approximation, called </span></span>deep neural network<span><span> solvers (DNN-Solvers). Given discrete points, the DNN acts as a solver for calculating knot positions in the case of a fixed knot number. The input can be any initial knots and the output provides the desirable knots. The loss function is based on the approximation error. The DNN-Solver converts the lower-dimensional knot placement problem, characterized as a nonconvex nonlinear optimization<span> problem, into a search for suitable network parameters within a high-dimensional space. Owing to the over-parameterization nature, DNN-Solvers are less likely to be trapped in local minima and robust against initial knots. Moreover, the unsupervised learning paradigm of DNN-Solvers liberates us from constructing high-quality </span></span>synthetic datasets with labels. Numerical experiments demonstrate that DNN-Solvers are excellent in both approximation results and efficiency under the premise of an appropriate number of knots.</span></p></div>","PeriodicalId":50632,"journal":{"name":"Computer-Aided Design","volume":"169 ","pages":"Article 103668"},"PeriodicalIF":3.0000,"publicationDate":"2023-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The deep neural network solver for B-spline approximation\",\"authors\":\"Zepeng Wen , Jiaqi Luo , Hongmei Kang\",\"doi\":\"10.1016/j.cad.2023.103668\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span>This paper introduces a novel unsupervised deep learning<span> approach to address the knot placement problem in the field of B-spline approximation, called </span></span>deep neural network<span><span> solvers (DNN-Solvers). Given discrete points, the DNN acts as a solver for calculating knot positions in the case of a fixed knot number. The input can be any initial knots and the output provides the desirable knots. The loss function is based on the approximation error. The DNN-Solver converts the lower-dimensional knot placement problem, characterized as a nonconvex nonlinear optimization<span> problem, into a search for suitable network parameters within a high-dimensional space. Owing to the over-parameterization nature, DNN-Solvers are less likely to be trapped in local minima and robust against initial knots. Moreover, the unsupervised learning paradigm of DNN-Solvers liberates us from constructing high-quality </span></span>synthetic datasets with labels. Numerical experiments demonstrate that DNN-Solvers are excellent in both approximation results and efficiency under the premise of an appropriate number of knots.</span></p></div>\",\"PeriodicalId\":50632,\"journal\":{\"name\":\"Computer-Aided Design\",\"volume\":\"169 \",\"pages\":\"Article 103668\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2023-12-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer-Aided Design\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0010448523002002\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer-Aided Design","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0010448523002002","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
The deep neural network solver for B-spline approximation
This paper introduces a novel unsupervised deep learning approach to address the knot placement problem in the field of B-spline approximation, called deep neural network solvers (DNN-Solvers). Given discrete points, the DNN acts as a solver for calculating knot positions in the case of a fixed knot number. The input can be any initial knots and the output provides the desirable knots. The loss function is based on the approximation error. The DNN-Solver converts the lower-dimensional knot placement problem, characterized as a nonconvex nonlinear optimization problem, into a search for suitable network parameters within a high-dimensional space. Owing to the over-parameterization nature, DNN-Solvers are less likely to be trapped in local minima and robust against initial knots. Moreover, the unsupervised learning paradigm of DNN-Solvers liberates us from constructing high-quality synthetic datasets with labels. Numerical experiments demonstrate that DNN-Solvers are excellent in both approximation results and efficiency under the premise of an appropriate number of knots.
期刊介绍:
Computer-Aided Design is a leading international journal that provides academia and industry with key papers on research and developments in the application of computers to design.
Computer-Aided Design invites papers reporting new research, as well as novel or particularly significant applications, within a wide range of topics, spanning all stages of design process from concept creation to manufacture and beyond.