{"title":"全面评估铝质和铜质翅片管热交换器的性能","authors":"Fang Wang, Yunding Li, Mengwei Liu, Dongqing Pang, Weifeng Du, Yichi Zhang, Xiaoqian Cheng, Tangtang Gu, Wenliang Guo","doi":"10.1155/2023/6666947","DOIUrl":null,"url":null,"abstract":"The finned-tube heat exchanger is the core part of an air conditioning system. Its heat exchange performance directly affects the energy consumption and efficiency of the air conditioner. The shortage and rising price of copper have led to increasing replacement of copper tubes with aluminum tubes in finned-tube heat exchangers. This paper studies two kinds of such heat exchangers, one consisting of copper tubes and aluminum fins and the other consisting of aluminum tubes and aluminum fins. The influences of the different base tube materials on heat transfer are compared and analyzed in terms of heat transfer strength and cost per unit heat transfer. The results show that the heat transfer and heat transfer coefficient increase with increasing inlet wind speed. Under different inlet wind speeds, the heat transfer and heat transfer coefficient of the finned-tube heat exchanger with aluminum tubes are 4%–12% and 7%%–9% lower than those of an identically structured heat exchanger with copper tubes, respectively. The aluminum-aluminum exchanger achieves 67% higher heat transfer than that of the copper-aluminum exchanger at only 8% of the cost. These results are significant for guiding the development and application of finned-tube heat exchangers.","PeriodicalId":13921,"journal":{"name":"International Journal of Chemical Engineering","volume":"73 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2023-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comprehensive Evaluation of the Performances of Heat Exchangers with Aluminum and Copper Finned Tubes\",\"authors\":\"Fang Wang, Yunding Li, Mengwei Liu, Dongqing Pang, Weifeng Du, Yichi Zhang, Xiaoqian Cheng, Tangtang Gu, Wenliang Guo\",\"doi\":\"10.1155/2023/6666947\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The finned-tube heat exchanger is the core part of an air conditioning system. Its heat exchange performance directly affects the energy consumption and efficiency of the air conditioner. The shortage and rising price of copper have led to increasing replacement of copper tubes with aluminum tubes in finned-tube heat exchangers. This paper studies two kinds of such heat exchangers, one consisting of copper tubes and aluminum fins and the other consisting of aluminum tubes and aluminum fins. The influences of the different base tube materials on heat transfer are compared and analyzed in terms of heat transfer strength and cost per unit heat transfer. The results show that the heat transfer and heat transfer coefficient increase with increasing inlet wind speed. Under different inlet wind speeds, the heat transfer and heat transfer coefficient of the finned-tube heat exchanger with aluminum tubes are 4%–12% and 7%%–9% lower than those of an identically structured heat exchanger with copper tubes, respectively. The aluminum-aluminum exchanger achieves 67% higher heat transfer than that of the copper-aluminum exchanger at only 8% of the cost. These results are significant for guiding the development and application of finned-tube heat exchangers.\",\"PeriodicalId\":13921,\"journal\":{\"name\":\"International Journal of Chemical Engineering\",\"volume\":\"73 1\",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2023-12-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Chemical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1155/2023/6666947\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1155/2023/6666947","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
Comprehensive Evaluation of the Performances of Heat Exchangers with Aluminum and Copper Finned Tubes
The finned-tube heat exchanger is the core part of an air conditioning system. Its heat exchange performance directly affects the energy consumption and efficiency of the air conditioner. The shortage and rising price of copper have led to increasing replacement of copper tubes with aluminum tubes in finned-tube heat exchangers. This paper studies two kinds of such heat exchangers, one consisting of copper tubes and aluminum fins and the other consisting of aluminum tubes and aluminum fins. The influences of the different base tube materials on heat transfer are compared and analyzed in terms of heat transfer strength and cost per unit heat transfer. The results show that the heat transfer and heat transfer coefficient increase with increasing inlet wind speed. Under different inlet wind speeds, the heat transfer and heat transfer coefficient of the finned-tube heat exchanger with aluminum tubes are 4%–12% and 7%%–9% lower than those of an identically structured heat exchanger with copper tubes, respectively. The aluminum-aluminum exchanger achieves 67% higher heat transfer than that of the copper-aluminum exchanger at only 8% of the cost. These results are significant for guiding the development and application of finned-tube heat exchangers.
期刊介绍:
International Journal of Chemical Engineering publishes papers on technologies for the production, processing, transportation, and use of chemicals on a large scale. Studies typically relate to processes within chemical and energy industries, especially for production of food, pharmaceuticals, fuels, and chemical feedstocks. Topics of investigation cover plant design and operation, process design and analysis, control and reaction engineering, as well as hazard mitigation and safety measures.
As well as original research, International Journal of Chemical Engineering also publishes focused review articles that examine the state of the art, identify emerging trends, and suggest future directions for developing fields.