{"title":"考虑边界效应的穿孔板挤压薄膜阻尼模型","authors":"Cunhao Lu, Zeyuan Zhang, Wei Liu, Jian Chen","doi":"10.1049/mna2.12185","DOIUrl":null,"url":null,"abstract":"<p>The squeeze-film damping (SQFD) is an important dissipation mechanism of Micro-Electro-Mechanical Systems resonators. The current SQFD models of perforated plates treat borders of plate and holes as the constant pressure boundary, without considering border effect. In this paper, the border effect on SQFD is studied by expanding simulation area. At the same time, based on the research of non-perforated plate border effect, the calculation size of the perforated plate hole cell is modified, and the modified SQFD model of the perforated plate has been built. Compared with simulation results, it shows the border effect has a great influence on SQFD of perforated plate. The precision of the modified model is higher than that of recent models. For a rectangular plate, the maximum error of the modified model is 12%, while for the recent model it is 40%. For a circular plate, the modified model is 38%, while the recent model is 58%.</p>","PeriodicalId":18398,"journal":{"name":"Micro & Nano Letters","volume":"19 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2023-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/mna2.12185","citationCount":"0","resultStr":"{\"title\":\"Squeeze-film damping model of perforated plate considering border effect\",\"authors\":\"Cunhao Lu, Zeyuan Zhang, Wei Liu, Jian Chen\",\"doi\":\"10.1049/mna2.12185\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The squeeze-film damping (SQFD) is an important dissipation mechanism of Micro-Electro-Mechanical Systems resonators. The current SQFD models of perforated plates treat borders of plate and holes as the constant pressure boundary, without considering border effect. In this paper, the border effect on SQFD is studied by expanding simulation area. At the same time, based on the research of non-perforated plate border effect, the calculation size of the perforated plate hole cell is modified, and the modified SQFD model of the perforated plate has been built. Compared with simulation results, it shows the border effect has a great influence on SQFD of perforated plate. The precision of the modified model is higher than that of recent models. For a rectangular plate, the maximum error of the modified model is 12%, while for the recent model it is 40%. For a circular plate, the modified model is 38%, while the recent model is 58%.</p>\",\"PeriodicalId\":18398,\"journal\":{\"name\":\"Micro & Nano Letters\",\"volume\":\"19 1\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2023-12-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/mna2.12185\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Micro & Nano Letters\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/mna2.12185\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Micro & Nano Letters","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/mna2.12185","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Squeeze-film damping model of perforated plate considering border effect
The squeeze-film damping (SQFD) is an important dissipation mechanism of Micro-Electro-Mechanical Systems resonators. The current SQFD models of perforated plates treat borders of plate and holes as the constant pressure boundary, without considering border effect. In this paper, the border effect on SQFD is studied by expanding simulation area. At the same time, based on the research of non-perforated plate border effect, the calculation size of the perforated plate hole cell is modified, and the modified SQFD model of the perforated plate has been built. Compared with simulation results, it shows the border effect has a great influence on SQFD of perforated plate. The precision of the modified model is higher than that of recent models. For a rectangular plate, the maximum error of the modified model is 12%, while for the recent model it is 40%. For a circular plate, the modified model is 38%, while the recent model is 58%.
期刊介绍:
Micro & Nano Letters offers express online publication of short research papers containing the latest advances in miniature and ultraminiature structures and systems. With an average of six weeks to decision, and publication online in advance of each issue, Micro & Nano Letters offers a rapid route for the international dissemination of high quality research findings from both the micro and nano communities.
Scope
Micro & Nano Letters offers express online publication of short research papers containing the latest advances in micro and nano-scale science, engineering and technology, with at least one dimension ranging from micrometers to nanometers. Micro & Nano Letters offers readers high-quality original research from both the micro and nano communities, and the materials and devices communities.
Bridging this gap between materials science and micro and nano-scale devices, Micro & Nano Letters addresses issues in the disciplines of engineering, physical, chemical, and biological science. It places particular emphasis on cross-disciplinary activities and applications.
Typical topics include:
Micro and nanostructures for the device communities
MEMS and NEMS
Modelling, simulation and realisation of micro and nanoscale structures, devices and systems, with comparisons to experimental data
Synthesis and processing
Micro and nano-photonics
Molecular machines, circuits and self-assembly
Organic and inorganic micro and nanostructures
Micro and nano-fluidics