DeepFlow:分布式人工智能系统的跨栈寻路框架

IF 2.2 4区 计算机科学 Q3 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE ACM Transactions on Design Automation of Electronic Systems Pub Date : 2023-12-21 DOI:10.1145/3635867
Newsha Ardalani, Saptadeep Pal, Puneet Gupta
{"title":"DeepFlow:分布式人工智能系统的跨栈寻路框架","authors":"Newsha Ardalani, Saptadeep Pal, Puneet Gupta","doi":"10.1145/3635867","DOIUrl":null,"url":null,"abstract":"<p>Over the past decade, machine learning model complexity has grown at an extraordinary rate, as has the scale of the systems training such large models. However there is an alarmingly low hardware utilization (5-20%) in large scale AI systems. The low system utilization is a cumulative effect of minor losses across different layers of the stack, exacerbated by the disconnect between engineers designing different layers spanning across different industries. To address this challenge, in this work we designed a cross-stack performance modelling and design space exploration framework. First, we introduce CrossFlow, a novel framework that enables cross-layer analysis all the way from the technology layer to the algorithmic layer. Next, we introduce DeepFlow (built on top of CrossFlow using machine learning techniques) to automate the design space exploration and co-optimization across different layers of the stack. We have validated CrossFlow’s accuracy with distributed training on real commercial hardware and showcase several DeepFlow case studies demonstrating pitfalls of not optimizing across the technology-hardware-software stack for what is likely, the most important workload driving large development investments in all aspects of computing stack.</p>","PeriodicalId":50944,"journal":{"name":"ACM Transactions on Design Automation of Electronic Systems","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2023-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"DeepFlow: A Cross-Stack Pathfinding Framework for Distributed AI Systems\",\"authors\":\"Newsha Ardalani, Saptadeep Pal, Puneet Gupta\",\"doi\":\"10.1145/3635867\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Over the past decade, machine learning model complexity has grown at an extraordinary rate, as has the scale of the systems training such large models. However there is an alarmingly low hardware utilization (5-20%) in large scale AI systems. The low system utilization is a cumulative effect of minor losses across different layers of the stack, exacerbated by the disconnect between engineers designing different layers spanning across different industries. To address this challenge, in this work we designed a cross-stack performance modelling and design space exploration framework. First, we introduce CrossFlow, a novel framework that enables cross-layer analysis all the way from the technology layer to the algorithmic layer. Next, we introduce DeepFlow (built on top of CrossFlow using machine learning techniques) to automate the design space exploration and co-optimization across different layers of the stack. We have validated CrossFlow’s accuracy with distributed training on real commercial hardware and showcase several DeepFlow case studies demonstrating pitfalls of not optimizing across the technology-hardware-software stack for what is likely, the most important workload driving large development investments in all aspects of computing stack.</p>\",\"PeriodicalId\":50944,\"journal\":{\"name\":\"ACM Transactions on Design Automation of Electronic Systems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2023-12-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Design Automation of Electronic Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1145/3635867\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Design Automation of Electronic Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3635867","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

摘要

在过去十年中,机器学习模型的复杂性以惊人的速度增长,训练这种大型模型的系统的规模也是如此。然而,大规模人工智能系统的硬件利用率却低得惊人(5%-20%)。系统利用率低是堆栈各层微小损耗的累积效应,而跨行业设计不同层的工程师之间的脱节则加剧了这一问题。为了应对这一挑战,我们在这项工作中设计了一个跨堆栈性能建模和设计空间探索框架。首先,我们介绍了 CrossFlow,这是一个新颖的框架,可实现从技术层到算法层的跨层分析。接着,我们介绍了 DeepFlow(利用机器学习技术构建于 CrossFlow 之上),以实现跨堆栈不同层的设计空间探索和协同优化的自动化。我们通过在实际商用硬件上进行分布式训练,验证了 CrossFlow 的准确性,并展示了几个 DeepFlow 案例研究,说明了对于可能是推动计算堆栈各方面大量开发投资的最重要工作负载,不在技术-硬件-软件堆栈之间进行优化的隐患。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
DeepFlow: A Cross-Stack Pathfinding Framework for Distributed AI Systems

Over the past decade, machine learning model complexity has grown at an extraordinary rate, as has the scale of the systems training such large models. However there is an alarmingly low hardware utilization (5-20%) in large scale AI systems. The low system utilization is a cumulative effect of minor losses across different layers of the stack, exacerbated by the disconnect between engineers designing different layers spanning across different industries. To address this challenge, in this work we designed a cross-stack performance modelling and design space exploration framework. First, we introduce CrossFlow, a novel framework that enables cross-layer analysis all the way from the technology layer to the algorithmic layer. Next, we introduce DeepFlow (built on top of CrossFlow using machine learning techniques) to automate the design space exploration and co-optimization across different layers of the stack. We have validated CrossFlow’s accuracy with distributed training on real commercial hardware and showcase several DeepFlow case studies demonstrating pitfalls of not optimizing across the technology-hardware-software stack for what is likely, the most important workload driving large development investments in all aspects of computing stack.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACM Transactions on Design Automation of Electronic Systems
ACM Transactions on Design Automation of Electronic Systems 工程技术-计算机:软件工程
CiteScore
3.20
自引率
7.10%
发文量
105
审稿时长
3 months
期刊介绍: TODAES is a premier ACM journal in design and automation of electronic systems. It publishes innovative work documenting significant research and development advances on the specification, design, analysis, simulation, testing, and evaluation of electronic systems, emphasizing a computer science/engineering orientation. Both theoretical analysis and practical solutions are welcome.
期刊最新文献
Efficient Attacks on Strong PUFs via Covariance and Boolean Modeling PriorMSM: An Efficient Acceleration Architecture for Multi-Scalar Multiplication Multi-Stream Scheduling of Inference Pipelines on Edge Devices - a DRL Approach A Power Optimization Approach for Large-scale RM-TB Dual Logic Circuits Based on an Adaptive Multi-Task Intelligent Algorithm MAB-BMC: A Formal Verification Enhancer by Harnessing Multiple BMC Engines Together
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1