Matthew Keys, Brian Hopkinson, Andrea Highfield, Abdul Chrachri, Colin Brownlee, Glen L. Wheeler
{"title":"硅藻对外部碳酸酐酶的需求受溶解无机碳供需关系的影响","authors":"Matthew Keys, Brian Hopkinson, Andrea Highfield, Abdul Chrachri, Colin Brownlee, Glen L. Wheeler","doi":"10.1111/jpy.13416","DOIUrl":null,"url":null,"abstract":"<p>Photosynthesis by marine diatoms contributes significantly to the global carbon cycle. Due to the low concentration of CO<sub>2</sub> in seawater, many diatoms use extracellular carbonic anhydrase (eCA) to enhance the supply of CO<sub>2</sub> to the cell surface. While much research has investigated how the requirement for eCA is influenced by changes in CO<sub>2</sub> availability, little is known about how eCA contributes to CO<sub>2</sub> supply following changes in the demand for carbon. We therefore examined how changes in photosynthetic rate influence the requirement for eCA in three centric diatoms. Modeling of cell surface carbonate chemistry indicated that diffusive CO<sub>2</sub> supply to the cell surface was greatly reduced in large diatoms at higher photosynthetic rates. Laboratory experiments demonstrated a trend of an increasing requirement for eCA with increasing photosynthetic rate that was most pronounced in the larger species, supporting the findings of the cellular modeling. Microelectrode measurements of cell surface pH and O<sub>2</sub> demonstrated that individual cells exhibited an increased contribution of eCA to photosynthesis at higher irradiances. Our data demonstrate that changes in carbon demand strongly influence the requirement for eCA in diatoms. Cell size and photosynthetic rate will therefore be key determinants of the mode of dissolved inorganic carbon uptake.</p>","PeriodicalId":16831,"journal":{"name":"Journal of Phycology","volume":null,"pages":null},"PeriodicalIF":2.8000,"publicationDate":"2023-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jpy.13416","citationCount":"0","resultStr":"{\"title\":\"The requirement for external carbonic anhydrase in diatoms is influenced by the supply and demand for dissolved inorganic carbon\",\"authors\":\"Matthew Keys, Brian Hopkinson, Andrea Highfield, Abdul Chrachri, Colin Brownlee, Glen L. Wheeler\",\"doi\":\"10.1111/jpy.13416\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Photosynthesis by marine diatoms contributes significantly to the global carbon cycle. Due to the low concentration of CO<sub>2</sub> in seawater, many diatoms use extracellular carbonic anhydrase (eCA) to enhance the supply of CO<sub>2</sub> to the cell surface. While much research has investigated how the requirement for eCA is influenced by changes in CO<sub>2</sub> availability, little is known about how eCA contributes to CO<sub>2</sub> supply following changes in the demand for carbon. We therefore examined how changes in photosynthetic rate influence the requirement for eCA in three centric diatoms. Modeling of cell surface carbonate chemistry indicated that diffusive CO<sub>2</sub> supply to the cell surface was greatly reduced in large diatoms at higher photosynthetic rates. Laboratory experiments demonstrated a trend of an increasing requirement for eCA with increasing photosynthetic rate that was most pronounced in the larger species, supporting the findings of the cellular modeling. Microelectrode measurements of cell surface pH and O<sub>2</sub> demonstrated that individual cells exhibited an increased contribution of eCA to photosynthesis at higher irradiances. Our data demonstrate that changes in carbon demand strongly influence the requirement for eCA in diatoms. Cell size and photosynthetic rate will therefore be key determinants of the mode of dissolved inorganic carbon uptake.</p>\",\"PeriodicalId\":16831,\"journal\":{\"name\":\"Journal of Phycology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2023-12-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jpy.13416\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Phycology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/jpy.13416\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MARINE & FRESHWATER BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Phycology","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jpy.13416","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MARINE & FRESHWATER BIOLOGY","Score":null,"Total":0}
The requirement for external carbonic anhydrase in diatoms is influenced by the supply and demand for dissolved inorganic carbon
Photosynthesis by marine diatoms contributes significantly to the global carbon cycle. Due to the low concentration of CO2 in seawater, many diatoms use extracellular carbonic anhydrase (eCA) to enhance the supply of CO2 to the cell surface. While much research has investigated how the requirement for eCA is influenced by changes in CO2 availability, little is known about how eCA contributes to CO2 supply following changes in the demand for carbon. We therefore examined how changes in photosynthetic rate influence the requirement for eCA in three centric diatoms. Modeling of cell surface carbonate chemistry indicated that diffusive CO2 supply to the cell surface was greatly reduced in large diatoms at higher photosynthetic rates. Laboratory experiments demonstrated a trend of an increasing requirement for eCA with increasing photosynthetic rate that was most pronounced in the larger species, supporting the findings of the cellular modeling. Microelectrode measurements of cell surface pH and O2 demonstrated that individual cells exhibited an increased contribution of eCA to photosynthesis at higher irradiances. Our data demonstrate that changes in carbon demand strongly influence the requirement for eCA in diatoms. Cell size and photosynthetic rate will therefore be key determinants of the mode of dissolved inorganic carbon uptake.
期刊介绍:
The Journal of Phycology was founded in 1965 by the Phycological Society of America. All aspects of basic and applied research on algae are included to provide a common medium for the ecologist, physiologist, cell biologist, molecular biologist, morphologist, oceanographer, taxonomist, geneticist, and biochemist. The Journal also welcomes research that emphasizes algal interactions with other organisms and the roles of algae as components of natural ecosystems.
All aspects of basic and applied research on algae are included to provide a common medium for the ecologist, physiologist, cell biologist, molecular biologist, morphologist, oceanographer, acquaculturist, systematist, geneticist, and biochemist. The Journal also welcomes research that emphasizes algal interactions with other organisms and the roles of algae as components of natural ecosystems.